https://doi.org/10.1051/epjconf/202328707025
Non-linear amplification to 200 W of an electro-optic frequency comb with GHz tunable repetition rates
1 Laboratoire Photonique Numérique et Nanosciences (LP2N), UMR 5298, CNRS-IOGS-Université Bordeaux, 33400 Talence, France
2 ALPhANOV, Institut d’Optique d’Aquitaine, Rue François Mitterrand, 33400 Talence, France
3 Institut Universitaire de France (IUF), 1 Rue Descartes, 75231 Paris, France
* Corresponding author: eric.cormier@u-bordeaux.fr
Published online: 18 October 2023
We present a monolithic Yb-doped fiber laser system delivering 200 W average power of femtosecond pulses at tunable GHz repetition rates. The system is based on a GHz electro-optic (EO) frequency comb operating in the nonlinear regime. The EO comb pulses at 1 µm wavelength are initially pre-compressed to sub-2 ps, amplified to 2.5 W, and finally boosted to 200 W in a newly designed large-mode-area, Yb-doped photonic crystal fiber. Continuously tunable across 1-18 GHz, the picosecond pulses experience nonlinear propagation in the booster amplifier, leading to output pulses compressible down to several hundreds of femtoseconds. To push our system deeper into the nonlinear amplification regime, the pulse repetition rate is further reduced to 2 GHz, enabling significant spectral broadening at 200 W. Characterization reveals sub-200 fs duration after compression. The present EO-comb seeded nonlinear amplification system opens a new route to the development of high-power, tunable GHz-repetition-rate, femtosecond fiber lasers.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.