https://doi.org/10.1051/epjconf/202328713016
Machine learning powered framework for detection of micro- and nanoplastics using optical photothermal infrared spectroscopy
School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
* Corresponding author: junli.xu@ucd.ie
Published online: 18 October 2023
Despite the breadth of scientific literature on micro- and nanoplastics (MNPs), a standardized procedure for detecting MNPs is still lacking so far, leading to incomparable results between published studies. This work innovatively proposed the combination of machine learning with advanced optical photothermal infrared (O-PTIR) spectroscopy to develop an efficient and reliable detection framework for MNPs. Spectra of MPs and non-MPs were first collected and inputted to build a classification model, based on which four important wavenumbers were selected. A simplified support vector machine (SVM) model was subsequently developed using the selected four wavenumbers. Good predictive ability was evidenced by a high accuracy of 0.9133. The developed method can improve speed as well as the reliability of results, having a great potential for routine analysis of MNPs, ultimately leading to the standardization of detection methods.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.