https://doi.org/10.1051/epjconf/202429404005
A Nuclear Data Evaluation Pipeline for the Fast Neutron Energy Range – using heteroscedastic Gaussian processes to treat model defects
Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
* e-mail: alf.gook@physics.uu.se
Published online: 17 April 2024
In this paper, we discuss the development of a nuclear data evaluation pipeline, based around the TALYS code system. The pipeline focuses on the evaluation of the fast neutron energy range, above the resolved resonances. A strong focus in development lies on automation and reproducibility, as well as the efficient use of large-scale computational infrastructure, to enable rapid testing of new algorithms and modified assumptions. Several novel concepts for nuclear data evaluation methodology are implemented. A particular problem in evaluating the neutron-induced reaction cross-section using TALYS, relates to the intermediate energy range. While TALYS only predicts the smooth energy-averaged cross-section, experiments reveal unresolved resonance-like structures. In this paper, we explore ways to treat this type of model defect using heteroscedastic Gaussian processes to automatically determine the distribution of experimental data around an energy-averaged cross-section curve.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.