https://doi.org/10.1051/epjconf/202429509011
Differentiable Programming: Neural Networks and Selection Cuts Working Together
University of Washington, Department of Physics, BOX 351560, Seattle, Washington, 98122, USA
* Corresponding author: gwatts@uw.edu
Published online: 6 May 2024
Differentiable Programming could open even more doors in HEP analysis and computing to Artificial Intelligence/Machine Learning. Current common uses of AI/ML in HEP are deep learning networks – providing us with sophisticated ways of separating signal from background, classifying physics, etc. This is only one part of a full analysis – normally skims are made to reduce dataset sizes by applying selection cuts, further selection cuts are applied, perhaps new quantities calculated, and all of that is fed to a deep learning network. Only the deep learning network stage is optimized using the AI/ML gradient decent technique. Differentiable programming offers us a way to optimize the full chain, including selection cuts that occur during skimming. This contribution investigates applying selection cuts in front of a simple neural network using differentiable programming techniques to optimize the complete chain on toy data. There are several well-known problems that must be solved – e.g., selection cuts are not differentiable, and the interaction of a selection cut and a network during training is not well understood. This investigation was motived by trying to automate reduced dataset skims and sizes during analysis – HL-LHC analyses have potentially multi-TB dataset sizes and an automated way of reducing those dataset sizes and understanding the trade-offs would help the analyser make a judgement between time, resource usages, and physics accuracy. This contribution explores the various techniques to apply a selection cut that are compatible with differentiable programming and how to work around issues when it is bolted onto a neural network. Code is available.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.