https://doi.org/10.1051/epjconf/202431503004
Test-beam measurements of instrumented sensor planes for a highly compact and granular electromagnetic calorimeter
Tel Aviv University
* e-mail: ybenham@cern.ch
Published online: 18 December 2024
The LUXE experiment is designed to explore the strong-field QED regime in interactions of high-energy electrons from the European XFEL in a powerful laser field. One of the crucial aims of this experiment is to measure the production of electron-positron pairs as a function of the laser field strength where non-perturbative effects are expected to kick in above the Schwinger limit. For the positron energy measurements and multiplicity spectra, a tracker and an electromagnetic calorimeter are foreseen. Since the expected number of positrons varies over five orders of magnitude, and has to be measured over a widely spread low energy background, the calorimeter must be compact and finely segmented. The concept of a sandwich calorimeter made of tungsten absorber plates interspersed with thin sensor planes is developed. The sensor planes comprise a silicon pad sensor, flexible kapton printed circuit planes for bias voltage supply and signal transport to the sensor edge, all embedded in a carbon fibre support. The thickness of a sensor plane is less than 1 mm. As an alternative, gallium arsenide sensors are considered with integrated readout strips. Prototypes of both sensor planes were studied in an electron beam of 5 GeV at DESY. Results from this test beam are presented on the sensor response homogeneity, edge effects, signal sharing and embedded trace effect.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.