Proceedings

EPJ Data Science Highlight - Behavioural studies from mobile crowd-sensing

Impact of exercise and socialisation on stress levels.

Smart phone monitoring has become a boon for scientists studying human behaviour and factors influencing stress

Using mobile phones for research is not new. However, interpreting the data collected from volunteers’ own smart phones--which has the potential to emulate randomised trials--can advance research into human behaviour. In a new study published in EPJ Data Science, scientists have just demonstrated the potential of using smart phones for conducting large-scale behavioural studies.The results stem from the work of Fani Tsapeli from the University of Birmingham, UK, and her colleague and Mirco Musolesi from University College London, UK. In their study, they evaluate the cause of increased stress levels of participants using user-generated data, harvested from their phones.

Most of the research work relying on smart phones has focused on detecting factors in the features extracted from smartphone data. The trouble is that pure correlation analysis does not provide for a sufficient understanding of human behaviour. Instead, scientists are now increasingly interested in identifying factors that could be at the root cause of issues revolving around health and well-being.

In this study, the authors used data from a research project at Dartmouth College, Hanover, USA, called StudentLife. It includes information on participants’ location taken from raw GPS data, which helps determine whether they are working or socialising. Also included is data on activity levels, like running, walking or travelling on public transport, inferred from participants’ raw accelerometer data.

They found that exercising and spending time outside the home and working environment have a positive effect on participants’ stress levels. By contrast, they found that reduced working hours only slightly impact stress. The conclusions cannot be extended to the general population due to the small sample size. But the approach has been validated and shows great promise for further studies.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences