Proceedings

EPJ Data Science Highlight - Mining digital crumbs helps predict crowds’ mobility

Daily number of commuters arriving in New York City from the different counties of New York State.

Analysing the traces of human behaviour from geolocalisation data gives clues for more accurate urban planning

Getting urban planning right is no mean feat. It requires understanding how and when people travel between different places. This knowledge, in turn, helps in dimensioning roads and motorways and in scaling the capacity of utilities, such as power grids or mobile phone towers. Now, physicists at the Institute for Scientific Interchange Foundation in Turin, Italy, have exploited the geolocalisation data from millions of users of the photo sharing site Flickr to show how it is possible to predict crowd movements. Mariano Beiró and colleagues have combined this data with existing theoretical models explaining the movement of people. In a study published in EPJ Data Science, they show that their approach can help improve predictions concerning the nature of travel of large crowds of people between two places.

Previously, social scientists proposed some theoretical models to explain how the flows of people or goods between cities are related to population distribution, economic development or travel distance. Thanks to geolocalisation, these last 50 years of static modelling can now be refined. In this study, the authors have thus combined them with actual digital crumbs left by social media users showing how people travel in the USA at different scales of distance.

To do so, they used a hybrid algorithm based on machine learning and capable of integrating patterns by processing available data to infer results when data is not available. Beiró and colleagues thus showed how predictions of how many people fly between airports, or commute between two counties, can be improved. Future research could extend these methods to real-time predictions of the collective flows of people, as data becomes more widely and more rapidly accessible. This will help avoid potential traffic congestion or resource shortages due to an emergency situation, for example.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences