https://doi.org/10.1051/epjconf/201921502001
Efficient Robust Design Optimization of Optical Systems
Dynardo GmbH, Steubenstrasse 25, Weimar, 99423, Germany
* Corresponding author: stephanie.kunath@dynardo.de
Published online: 10 September 2019
To accelerate the virtual product development of using optical simulation software, the Robust Design Optimization approach is very promising. Optical designs can be explored thoroughly by means of sensitivity analysis. This includes the identification of relevant input parameters and the modelling of inputs vs. outputs to understand their dependencies and interactions. Furthermore, the intelligent definition of objective functions for an efficient subsequent optimization is of high importance for multi-objective optimization tasks. To find the best trade-off between two or more merit functions, a Pareto optimization is the best choice. As a result, not only one design, but a front of best designs is obtained and the most appropriate design can be selected by the decision maker. Additionally, the best trade-off between output variation of the robustness (tolerance) and optimization targets can be found to secure the manufacturability of the optical design by several advanced approaches. The benefit of this Robust Design Optimization approach will be demonstrated.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.