https://doi.org/10.1051/epjconf/202125205001
Newtonian dynamics of imaginary time-dependent mean field theory
Cyclotron Institute, Texas A&M University, College Station, TX 77843-USA.
Laboratori Nazionali del Sud-INFN, v. Santa Sofia 64, 95123 Catania, Italy.
Published online: 10 September 2021
A Time Dependent Hartree-Fock (TDHF) based classical model is applied to sub-barrier fusion reactions using the Feynman Path Integral Method (FPIM). The fusion cross-sections and modified astrophysical S*-factors are calculated for the 12C+12C reactions and compared to direct and indirect experimental results. Different channels cross-sections are estimated from the statistical decay of the compound nucleus. A good agreement with the direct data is found. We suggest a complementary observable given by the (imaginary) action A easily derived from theory and experiments. When properly normalized by the action in the Gamow limit it has an upper value of 1 at zero beam energies. It becomes negative at the Coulomb barrier which is Vcb=5.05±0.05MeV from direct data and Vcb=5.5MeV from model calculations.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.