EPJ A Highlight - The P2-Experiment - A future high-precision measurement of the weak mixing angle at low momentum transfer

The experimental setup of the P2-experiment to measure the weak mixing angle at the new electron accelerator MESA in Mainz.

The P2-experiment at the new electron accelerator MESA in Mainz aims at a high-precision determination of the weak mixing angle at the permille level at low Q2. This accuracy is comparable to existing measurements at the Z-pole but allows for sensitive tests of the Standard Model up to a mass scale of 50 TeV. The weak mixing angle will be extracted from a measurement of the parity violating asymmetry in elastic electron-proton scattering. The asymmetry measured at P2 is smaller than any asymmetry measured so far in electron scattering, with an unprecedented accuracy. This review just published in EPJ A describes the underlying physics and the innovative experimental techniques, such as the Cherenkov detector, beam control, polarimetry, and the construction of a novel liquid hydrogen high-power target. The physics program of the MESA facility comprises indirect, high-precision search for physics beyond the Standard Model, measurement of the neutron distribution in nuclei, transverse single-spin asymmetries, and a possible future extension to the measurement of hadronic parity violation.

Dominik Becker et al. (2018), The P2 experiment, Eur. Phys. J. A (2018) 54: 208, DOI 10.1140/epja/i2018-12611-6

I thank you very much for the patient and efficient support for technical and administrative assistance given me during the preparation of the necessary material for the publication of proceedings . The complete procedure for the publication took place in a short time by the organization of EPJ Web of Conferences, and I hope that the results of our Symposium can meet a wide interest from the scientific community working in the field of physics of mesons.

Giorgio Giardina, Messina University - INFN Catania, Italy
Co-editor EPJ Web of Conferences vol. 72, 2014

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences