Proceedings

EPJ A Highlight - Confirming the validity of the Silver-Blaze property for QCD at finite chemical potential

alt
Sketch of the QCD phase diagram in the temperature and baryon chemical potential plane.

The properties of the theory of strong interactions, QCD, at finite chemical potential are of great interest for at least two reasons: (i) model studies suggest a potentially rich landscape of different phases with highly interesting analogies to those found in solid state physics; (ii) the resulting thermodynamic properties have far reaching consequences for the physics of neutron stars and neutron star mergers.

Investigating the properties of light scalar and pseudo-scalar quark-antiquark bound states at finite chemical potential by solving coupled sets of Dyson-Schwinger equations, the meson masses, wave functions, and decay constants are computed, as well as changes in the quark dressing functions for chemical potentials below the first-order chiral phase transition while tracing charge-conjugation parity breaking.

Eventually, we confirm the validity of the Silver-Blaze property: in observables all dependencies of colored quantities (propagators, wave-functions, etc.) on chemical potential cancel out and we observe constant masses and decay constants up to and into the coexistence region of the first-order chiral phase transition.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences