Proceedings

EPJ A Highlight - Emergence of nuclear rotation from elementary interactions between the nucleons

alt
Rotational bands in an ab initio calculations for the nuclear excitation spectrum of 11Be.

Nuclei are quantum many-body systems which exhibit emergent degrees of freedom, from shell structure and clustering to collective rotations and vibrations. Such emergent phenomena are traditionally the domain of phenomenological models, yet their description can now be placed on a more fundamental footing in terms of microscopic theory. The nature and emergence of rotational bands are presently investigated in light nuclei through ab initio nuclear many-body calculations. Beyond simply analyzing spectroscopic signatures, the structural insight are investigated in terms of angular momentum coupling schemes and group theoretical correlations as underpinnings for the rotational structure.

EPJ A Highlight - Advancing AGATA – Future Science with The Advanced Gamma Tracking Array

alt
Artist's view of the 4p AGATA spectrometer showing the mechanical holding frame (yellow) and cryostat dewars (blue) of the Ge detectors.

AGATA – the Advanced Gamma Tracking Array is a multi-national European project for the ultimate high-resolution gamma-ray spectrometer for nuclear physics capable of measuring γ rays from a few tens of keV to beyond 10 MeV, with unprecedented efficiency, excellent position resolution for individual γ-ray interactions and correspondingly unparalleled angular resolution, and very high count-rate capability. AGATA will be a flag ship spectrometer and have an enormous impact on nuclear structure studies at the extremes of isospin, mass, angular momentum, excitation energy and temperature. It will enable us to uncover and understand hitherto hidden secrets of the atomic nucleus.

Read more...

EPJ A Highlight - Towards the solution of the “hyperon puzzle”

alt
Neutron star’s mass-radius relation with and without hyperons. Masses of the pulsars PSR J0348+0432 and PSR J0740+6620 are shown with their observation uncertainties.

The possible presence of strange matter in the core of neutron stars has given rise to the so-called hyperon puzzle: hyperonic degrees of freedom are energetically allowed in the extreme density conditions believed to exist in the core of Neutron Stars, but hyperons reduce the internal pressure of the star, which then cannot compensate the gravitational field to sustain the most massive compact stars observed.

This work reports on the effect of three-body interactions when including a Lambda hyperon on the properties of hyper-nuclei and Neutron Stars. State-of-the-art three-body chiral effective interactions are introduced in a microscopic Brueckner-Hartree-Fock calculation.

Read more...

EPJ A Highlight - Confirming the validity of the Silver-Blaze property for QCD at finite chemical potential

alt
Sketch of the QCD phase diagram in the temperature and baryon chemical potential plane.

The properties of the theory of strong interactions, QCD, at finite chemical potential are of great interest for at least two reasons: (i) model studies suggest a potentially rich landscape of different phases with highly interesting analogies to those found in solid state physics; (ii) the resulting thermodynamic properties have far reaching consequences for the physics of neutron stars and neutron star mergers.

Read more...

EPJ A Highlight - A Liquid-Lithium Target for Nuclear Physics

alt
The free-surface LiLiT flow, photographed while bombarded by a ~ 3 kW continuous-wave proton beam from the SARAF linac. The liquid lithium jet, ~1.5 mm thick, forced-flown at a velocity of 2.5 m/s at ~ 195 °C and supported by a 0.5 mm thick stainless steel backing wall, serves both as a neutron producing target and the power beam dump. The target chamber pressure connected to the accelerator beam line is 1×10-6 mbar.

A liquid-lithium target (LiLiT) bombarded by a 1.5 mA, 1.92 MeV proton beam from the SARAF superconducting linac acts as a ~30 keV quasi-Maxwellian neutron source via the 7Li(p,n) reaction with the highest intensity (5×1010 neutrons/s) available todate. We activate samples relevant to stellar nucleosynthesis by slow neutron capture (s-process). Activation products are detected by α, β or γ spectrometry or by direct atom counting (accelerator mass spectrometry, atom-trap trace analysis). The neutron capture cross sections, corrected for systematic effects using detailed simulations of neutron production and transport, lead to experimental astrophysical Maxwellian averaged cross sections (MACS). A parallel effort to develop a LiLiT-based neutron source for cancer therapy is ongoing, taking advantage of the neutron spectrum suitability for Boron Neutron Capture Therapy (BNCT) and the high neutron yield available.

EPJ A Highlight - Shape stability of pasta phases: Lasagna case

alt

Exotic non-spherical shapes of nuclear matter, so called pasta phases, are possible because of the competition between the short-ranged nuclear attraction and the long-ranged Coulomb repulsion, leading to the phenomenon of Coulomb frustration, well known in statistical mechanics. Such complex phases are expected in the inner crust of neutron stars, as well as in core-collapse supernova cores.

The authors of the EPJ A (2018) 54:215 paper examine for the first time the stability of the «lasagna» phase, consisting of periodically placed slabs, by means of exact geometrical methods. Calculations are done in the framework of the compressible liquid drop model but obtained results are universal and do not depend on model parameters like surface tension and charge density. The stability analysis is done with respect to the different types of deformations corresponding to the eigenvalues of the deformation matrix.

Read more...

EPJ A Highlight - Lattice Improvement in Lattice Effective Field Theory

alt
The dimer-boson inverse scattering length $1/a_{3}$ versus lattice spacing at LO, NLO, and N2LO. The vertical lines give the upper limits of the fit range

Lattice calculations using the framework of effective field theory have been applied to a wide range of few-body and many-body systems. One of the challenges of these calculations is to remove systematic errors arising from the nonzero lattice spacing. While the lattice improvement program pioneered by Symanzik provides a formalism for doing this and has already been utilized in lattice effective field theory calculations, the effectiveness of the improvement program has not been systematically benchmarked.

In this work lattice improvement is used to remove lattice errors for a one-dimensional system of bosons with zero-range interactions. To this aim the improved lattice action up to next-to-next-to-leading order is constructed and it is verified that the remaining errors scale as the fourth power of the lattice spacing for observables involving as many as five particles. These results provide a guide for increasing the accuracy of future calculations in lattice effective field theory with improved lattice actions.

Read more...

EPJ A Highlight - The P2-Experiment - A future high-precision measurement of the weak mixing angle at low momentum transfer

alt
The experimental setup of the P2-experiment to measure the weak mixing angle at the new electron accelerator MESA in Mainz.

The P2-experiment at the new electron accelerator MESA in Mainz aims at a high-precision determination of the weak mixing angle at the permille level at low Q2. This accuracy is comparable to existing measurements at the Z-pole but allows for sensitive tests of the Standard Model up to a mass scale of 50 TeV. The weak mixing angle will be extracted from a measurement of the parity violating asymmetry in elastic electron-proton scattering. The asymmetry measured at P2 is smaller than any asymmetry measured so far in electron scattering, with an unprecedented accuracy. This review just published in EPJ A describes the underlying physics and the innovative experimental techniques, such as the Cherenkov detector, beam control, polarimetry, and the construction of a novel liquid hydrogen high-power target. The physics program of the MESA facility comprises indirect, high-precision search for physics beyond the Standard Model, measurement of the neutron distribution in nuclei, transverse single-spin asymmetries, and a possible future extension to the measurement of hadronic parity violation.

Read more...

EPJ A Highlight - The power of resolution in charge-exchange reactions

alt
Spectra of the 76Ge(3He,t)76As reaction unveiling an enormous number of resolved states at low excitation energies. Five color-coded spectra are stacked on top of each other showing the angular dependences. The isobaric analog state (IAS), GT resonance (GTR) and spin-dipole resonance (SDR) are indicated.

This review highlights the extraordinary power of the hadronic charge-exchange reactions at intermediate energies and at highest spectral resolution, as exemplified by the (n,p)-type (d,2He) and the (p,n)-type (3He,t) reactions. The review shows how areas of nuclear physics, astrophysics and particle physics alike benefit from such enhanced resolution. A major part of this review focuses on weak interaction processes in nuclei, especially on those, where neutrinos play a pivotal role like in solar neutrino induced reactions or in ßß decay. Unexpected and even surprising new features of nuclear structure are being unveiled as a result of high resolution. (See figure).

Read more...

EPJ A has a new Editor in Chief for Theoretical Physics II

David Blaschke

From October 2018 David Blaschke succeeds Tamás S. Biró as Editor in Chief of EPJ A for the section Theoretical Physics II: Hadron Physics and Quark Matter.

David Blaschke is Professor for Theoretical Physics of the University of Wroclaw and leading scientist at the Joint Institute for Nuclear Research in Dubna. His research interest is in developing quantum field theoretical models of strongly interacting matter to describe the transition from hadronic matter to the quark gluon plasma in the QCD phase diagram. He studies applications of these models to the physics of compact stars, their mergers and to relativistic heavy-ion collisions.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences

Conference announcements