Proceedings

EPJ AP Highlight - Emergent gain materials for active photonics

Example of an optical waveguide containing colloidal quantum dots. When the nanostructures are optically pumped the waveguide propagates and confines the photoluminescence. Above a certain threshold light is amplified.

Nowadays semiconductor nanostructures developed by colloidal methods have emerged as an alternative to the classical III-V semiconductors and rare earth technologies to provide active functionalities in photonic devices. Their outstanding optical properties include high absorption cross section, high quantum yield of emission at room temperature, or the capability of tuning the band-gap with the size/base material. As a consequence, these materials have been successfully applied in several fields, such as photodetection, amplification, generation of light or sensing. For these purposes their solution process nature provides a cheap fabrication, and an easy incorporation on a broad range of substrates and photonic structures. This review summarizes the great effort undertaken by the scientific community to construct active photonic devices based on semiconductors fabricated by chemical methods. The works compares the performances demonstrated by semiconductor nanocrystals (colloidal quantum dots, quantum rods and quantum wells) with those provided by organometal halide perovskites, and describes their appropriate integration into photonic architectures (waveguides and cavities) to achieve stimulated emission.

Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites, Isaac Suárez Álvarez (2016), Eur. Phys. J. Appl. Phys., 75: 30001, DOI 10.1051/epjap/2016160151

In 2012 we organized the International Conference on Nuclear Structure and Related Topics (NSRT12). Among several offers for publishing the Proceedings we have chosen the open-access journal EPJ Web of Conferences and have not been disappointed. Since this was our first experience with the on-line publication we had many questions to the editorial staff and several times changed our mind. And always we got prompt, exhaustive and patient answers and instructions. We were fully satisfied with the final quality of publication when it has appeared on the website. So our experience in collaboration with the journal is encouraging without any doubts.

Prof. Andrej I. Vdovin, Joint Institute for Nuclear Research, Russia
Member of the Organizing Committee NSRT12, EPJ Web of Conferences vol.38, 2012

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences