Proceedings

EPJ B Highlight - New method helps stabilise materials with elusive magnetism

Visualisation of itinerant ferromagnetic domains.

Stabilising materials with transient magnetic characteristics makes it easier to study them

Magnetic materials displaying what is referred to as itinerant ferromagnetism are in an elusive physical state that is not yet fully understood. They behave like a magnets under very specific conditions, such as at ultracold temperatures near absolute zero. Physicists normally have no other choice than to study this very unique state of matter in a controlled fashion, using ultracold atomic gases. Now, a team based at ETH Zurich, Switzerland has introduced two new theoretical approaches to stabilise the ferromagnetic state in quantum gases to help study the characteristics of itinerant ferromagnetic materials. These results were recently published in EPJ B by Ilia Zintchenko and colleagues.

Physicists already know that magnetic order can arise in materials when the temperature drops below their material-specific critical temperature. Then the state of electrons’ inner characteristics, called spin, can either be split between spin up and spin down, while the electrons can still move in space.

Realising the itinerant ferromagnetic state experimentally using ultracold gas is a challenging undertaking. This is because when three atoms--one with the opposite spin of the other two--come close to each other two atoms with opposite spin will form molecules and the other one carries the binding energy away; a phenomenon called rapid three-body recombination. The rate of such recombination process increases rapidly with the scattering length.

In this study, the authors discussed two new improved stability conditions for ferromagnetic state in quantum gasses. The first approach involves imposing a moderate optical lattice, which extends the ferromagnetic phase to smaller scattering lengths. There, the three-body recombination is small enough to permit experimental detection of the phase. In a second approach, they suggest to prepare two initially separated clouds and study their time evolution. The ferromagnetic domains has longer life time because of the reduced overlap region between the two spins.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences