Proceedings

EPJ B Highlight - Tortoise electrons trying to catch up with hare photons give graphene its conductivity

Illustrative picture of the system studied.

Collective electron interaction, mediated by photons across space-time under a weak magnetic field, explains the special conductivity of the one-atom-thick material

How electrons interact with other electrons at quantum scale in graphene affects how quickly they travel in the material, leading to its high conductivity. Now, Natália Menezes and Cristiane Morais Smith from the Centre for Extreme Matter and Emergent Phenomena at Utrecht University, the Netherlands, and a Brazilian colleague, Van Sergio Alves, have developed a model attributing the greater conductivity in graphene to the accelerating effect of electrons interacting with photons under a weak magnetic field. Their findings have been published in EPJ B.

Due to the honeycomb-lattice structure of the one-layer-thick carbon-atom material, the energy of the electrons varies in keeping with their speed. If we had to picture the spectrum of electrons’ speed, it would resemble a cone. The slope of the cone is the electron speed, which is three hundred times smaller than the speed of light.

In this study, physicists have devised a way of testing what happens when electrons interact with each other. To do so, they used pseudo-quantum electrodynamics (PQED), a theory that effective describes the interaction between electrons mediated by photons existing in different space-time dimensions. While the electrons are limited to propagating on a plane, the photons are free to move in 3D space.

As part of the study, the authors also took into account a weak magnetic field perpendicular to the graphene plane. They then used two different methods to examine its trending effect on the way the energy of electrons is spread around the vertex of the cone. The surprising finding is that electrons have a tendency to increase their velocity towards that of the photons, which travel at the speed of light. And the weak magnetic field does not change this trend. Therefore, the electrons’ collective behaviour, which is linked to conductivity, remains the same as in the absence of a weak field.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences