Proceedings

EPJ B Colloquium - Laser and hot-electrons induced ultrafast magnetic phenomena in multilayers and nanostructures

Laser excited electrons transport in magnetic heterostructures

Understanding and controlling the magnetization dynamics in magnetic multilayers and nanostructures on the femtosecond timescale is becoming indispensable, both at the fundamental level and to develop future technological applications. While direct laser excitation of a ferromagnetic layer was commonly used during the past twenty years, laser-induced hot-electrons femtosecond pulses and subsequent transport in magnetic multilayers have attracted a lot of attention. Indeed, replacing photons by hot-electrons offers complementary information to improve our understanding of ultrafast magnetization dynamics and to provide new possibilities for manipulating the magnetization in a thin layer on the femtosecond timescale.

In this EPJ B Colloquium, Malinowski, Bergeard, Hehn and Mangin report on experiments of hot-electrons-induced ultrafast magnetic phenomena. The authors discuss the role of hot-electrons transport in the ultrafast loss of magnetization in magnetic single and multilayers and how it is exploited to trigger magnetization dynamics in magnetic multilayers.

Publishing the proceedings of our conference in EPJ Web of conferences has been a very positive experience. The staff is very professional, reacts fast and is always helpful. The Proceedings were published very quickly, within two months of providing the material!

Prof. Martine Bosman, Institut de Física d'Altes Energies, Spain
Co-editor EPJ Web of Conferences vol. 60, 2013

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences