Proceedings

EPJ B Highlight - Uncovering spin ladders in real compounds

Ladder in a low-dimensional spin system

Low-dimensional quantum systems named ‘spin ladders’ are strongly linked to superconductivity. A new theoretical approach has accurately predicted the nature of the spin ladder which appears in real chemical compound – possibly paving the way for new discoveries of advanced superconductors.

When fabricated in 1 or 2 dimensions, systems of particles whose quantum spins interact with each other can display some unique quantum properties. Through new research published in EPJ B, Asif Iqbal and Baidur Rahaman at Aliah University in Kolkata, India, developed a new theoretical technique for calculating the structures and interactions taking place in these unique materials. Their approach could pave the way for advanced new superconductors – which allow electric currents to flow through them with zero resistance.

Acting as an intermediate between 1- and 2-dimensional systems, spin systems feature some unique quantum behaviours. They come in a variety of different types, among the most interesting of which are ‘spin ladders.’ These are made up of 1D chains of particles whose quantum spins, individually named ‘legs,’ are linked together by their quantum interactions – forming the ladder’s ‘rungs’. Crucially, spin ladders behave differently depending on whether their number of legs is odd or even.

Recently, physicists have discovered that superconductivity can be enhanced in spin ladders by carefully introducing impurities into their chemical structures. In their study, Iqbal and Rahaman drew from this research to study a material with the formula Cu2(SeO3)F2. This compound is a known ‘antiferromagnetic’ spin ladder, meaning the spins of neighbouring atoms in the ladder must alternately point in opposite directions.

The duo’s calculations involved ‘density functional theory’: a method widely used in quantum mechanics to study electronic structures, based on the concept that a system’s total energy can be linked to the distribution of its electrons. With this approach, Iqbal and Rahaman found that modelling the material from first principles could accurately reproduce its chemical and structural properties – showing how Cu2(SeO3)F2 behaves as a spin ladder with an even number of legs, with weak interactions between neighbouring spins. The duo now hopes their approach could help researchers to develop advanced new superconductors more easily – potentially leading to advances in cutting-edge areas of research including quantum computing.

Iqbal, A., Rahaman, B. Electronic structure and microscopic model of Cu2(SeO3)F2: a 2-D AFM ladder compound. Eur. Phys. J. B 96:46 (2023). https://doi.org/10.1140/epjb/s10051-023-00514-1

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences