Proceedings

EPJ B Highlight - Investigating the use of noise to solve inverse physical problems

A graphical representation of a seismic inversion problem. Credit: Corso, et al, (2023)

New research looks at the problem of solving a physics problem starting with observational data and working backwards

The early success of physics comes mainly from solving direct or forward problems in which the physical state of a system can be described from a well-defined physical model and from governing equations. Yet, there exists a different type of problem, inverse problems, that are trickier to solve but are crucial to fields such as engineering, astrophysics and geophysics.

Solving these inverse problems requires taking a set of observational data and then working backwards, or inverting the problem, to arrive at the causal factors that gave rise to the data.

A new paper in EPJ B by Universidade Federal do Rio researchers Gilberto Corso and João Medeiros de Araujo, considers the possibility of solving inverse problems in physics by using statistical information from noise statistics.

“In general, physical problems can be viewed as direct or inverse problems. In the direct case, we know the parameters of the model, and we try to find the solution,” Corso said. “In the inverse case, we know the empirical solution, and we try to find the model that has generated such a solution.”

To assess inverse problems the authors applied the use of Tsallis statistics, a collection of mathematical functions and associated probability distributions, to a seismic reflection problem that is typical in the oil industry. In this situation, waves are produced on the surface of Earth, reflect in the geologic strata and are then recorded when they once again arrive on the surface.

This data is used to build a model of Earth’s subsurface, thus constituting an inverse problem, but upon its arrival at the surface the wave data is polluted with non-useful data or “noise.” The team wanted to know if this noise could actually be used to enhance an inversion.

“The main issue with inverse problems is the noise,” Corso explained. “Different kinds of noise exist in nature that can be modelled with, for instance, Tsallis statistics. Moreover, the noise information could be used to enhance the inversion.”

Creating a simulation of a complex system polluted with noise, the scientists found that inverse problems cannot be solved with the use of Tsallis noise. This was something that Corso said was surprising, with the scientists adding he and his colleague now intend to investigate other types of noise, to determine if these are equally unhelpful in enhancing an inversion.

“We intend to explore in more detail other kinds of noise distributions to check our hypothesis over other noise models,” Corso concluded.

Silveira, A.A.Q.d., de Souza, R.F., Maciel, J.d.S. et al. Puzzle in inverse problems: Tsallis noise and Tsallis norm. Eur. Phys. J. B 96:30 (2023). https://doi.org/10.1140/epjb/s10051-023-00496-0

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences