Proceedings

EPJB Review - New promising bulk thermoelectrics

alt
Superlattice structure of (BiS)1.2(TiS2)2 misfit layer sulfide. (Fig. 15).

The growing need for alternative “green” energy sources has prompted renewed interest in thermoelectric materials. These materials can directly convert heat to electricity or, conversely, use electrical current to cool. The thermoelectric performance of a material can be estimated by the so-called figure of merit, zT = σα2T/λ (α is the Seebeck coefficient, σα2 is the power factor, σ and λ are the electrical and thermal conductivity, respectively), the value of which depends only on the material.

In a new EPJ B review, authors Gonçalves and Godart discuss the state of the art in this field, with special emphasis on the strategies to reduce the lattice part of the thermal conductivity and maximize the power factor in thermoelectric materials.

In the mid-1990s the “phonon glass and electron crystal” concept was developed which, together with a better understanding of the parameters that affect zT and the use of new synthetic methods and characterisation techniques, has led to the discovery of improved bulk thermoelectric materials that are now being utilised in practical applications. During the last few decades there has been particular focus on skutterudites, clathrates, half-Heusler alloys, Si1−xGex-, Bi2Te3- and PbTe-based materials. But many other materials, in particular those based on intermetallics, pnictides, chalcogenides, oxides, etc., are now emerging as potential advanced bulk thermoelectrics.

The authors also review the most recently identified potential thermoelectric bulk materials, in particular those based on intermetallics, pnictides and chalcogenides. They conclude with a discussion of the different shaping techniques that have been used to produce bulk materials from nanostructured thermoelectric materials.

New promising bulk thermoelectrics: intermetallics, pnictides and chalcogenides. Antonio P. Gonçalves and Claude Godart (2014) Eur.Phys. J. B, DOI: 10.1140/epjb/e2014-40989-3

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences