Proceedings

EPJ C Highlight - Bright sparks shed new light on the dark matter riddle

alt
Data gathered by the detector module Lise depicted in the light yield energy plane.

Highest sensitivity detector ever used for very light dark matter elementary particles

The origin of matter in the universe has puzzled physicists for generations. Today, we know that matter only accounts for 5% of our universe; another 25% is constituted of dark matter. And the remaining 70% is made up of dark energy. Dark matter itself represents an unsolved riddle.

Physicists believe that such dark matter is composed of (as yet undefined) elementary particles that stick together thanks to gravitational force. In a study recently published in EPJ C, scientists from the CRESST-II research project use the so-called phonon-light technique to detect dark matter. They are the first to use a detection probe that operates with such a low trigger threshold, which yields suitable sensitivity levels to uncover the as-yet elusive particles responsible for dark matter.

Until quite recently, the so-called WIMP - Weakly Interacting Massive Particle - was the preferred candidate for a new elementary particle to explain dark matter. However, the asymmetric dark matter particle models have attracted more and more interest in the past few years. The experimental detection is no different from the scattering of two billiard balls, as the particle scatters on an atomic nucleus. The detection method is based on the fact that the scattering would heat up a calcium tungstate (CaWO4) crystal.

The challenge: the lighter the dark matter particle is, the smaller the energy deposited in the crystal is. Currently, no other direct dark matter search method has a threshold for nuclear recoils as low as 0.3 kiloelectronVolt (keV). As such, the CRESST-II team are the first to ever probe dark matter particle masses at such low mass scale (below one GeV/c^2-as far as 0.5GeV/c^2). The next-generation CRESST-III detector is currently being upgraded and promises to reach thresholds of 100 electronVolts (eV), following successful tests of prototypes.

Results on light dark matter particles with a low-threshold CRESST-II detector. G. Angloher, A. Bento, C. Bucci, L. Canonica, X. Defay, A. Erb, F. v. Feilitzsch, N. Ferreiro Iachellini, P. Gorla, A. Gütlein, D. Hauff, J. Jochum, M. Kiefer, H. Kluck, H. Kraus, J. C. Lanfranchi, J. Loebell, A. Münster, C. Pagliarone, F. Petricca, W. Potzel, F. Pröbst, F. Reindl, K. Schäffner, J. Schieck, S. Schönert, W. Seidel, L. Stodolsky, C. Strandhagen, R. Strauss, A. Tanzke, H.H. Trinh Thi, C. Türko˘glu, M. Uffinger, A. Ulrich, I. Usherov, S.Wawoczny, M. Willers, M. Wüstrich and A. Zöller (2016), Eur. Phys. J. C 76: 25, DOI 10.1140/epjc/s10052-016-3877-3

Results on low mass WIMPs using an upgraded CRESST-II detector.
G. Angloher , A. Bento, C. Bucci, L. Canonica, A. Erb, F. von Feilitzsch, N. Ferreiro Iachellini , P. Gorla3, A. Gütlein, D. Hauff , P. Huff, J. Jochum, M. Kiefer , C. Kister , H. Kluck, H. Kraus, J.-C. Lanfranchi, J. Loebell, A. Münster, F. Petricca, W. Potzel, F. Pröbst, F. Reindl, S. Roth, K. Rottler, C. Sailer, K. Schäffner, J. Schieck, J. Schmaler, S. Scholl, S. Schönert, W. Seidel, M. von Sivers, L. Stodolsky, C. Strandhagen, R. Strauss, A. Tanzke, M. Uffinger, A. Ulrich, I. Usherov, S. Wawoczny, M. Willers, M. Wüstrich, A. Zöller (2014), Eur. Phys. J. C 74: 3184, DOI 10.1140/epjc/s10052-014-3184-9

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences