EPJ C Highlight - Combining experimental data to test models of new physics that explain dark matter

Likelihood of scattering, from the scalar singlet model and experimental data comparison.

The most statistically consistent and versatile tool to date is designed to gain insights into dark matter from models that extend the standard model of particle physics, rigorously comparing them with the latest experimental data

In chess, a gambit refers to a move in which a player risks one piece to gain an advantage. The quest to explain dark matter, a missing ingredient from the minimal model that can describe the fundamental particles we have observed (referred to as the standard model of particle physics), has left many physicists eager to gain an advantage when comparing theoretical models to as many experiments as possible. In particular, maintaining calculation speed without sacrificing the number of parameters involved is a priority. Now the GAMBIT collaboration, an international group of physicists, has just published a series of papers in EPJ C that offer the most promising approach to date to understanding dark matter.

The collaboration has developed the eponymous GAMBIT software, designed to combine the growing volume of experimental data from multiple sources—a process referred to as a global fit—in a statistically consistent manner. Such data typically comes from astrophysical observations and experiments that collide subatomic particles, such as those involving the Large Hadron Collider (LHC), based at CERN in Geneva, Switzerland.

The software enables new experimental data and physics models to be included with ease and is now freely available to the scientific community. With the capacity to take more scenarios into account than was previously possible, this approach opens the door to explorations of many new theoretical explanations of the presence of dark matter.

In the first three GAMBIT physics studies published so far in EPJ C, the authors produce the most rigorous global fits of four different extensions of the standard model, referred to as supersymmetric, and another model, called the simple scalar singlet extension. The global fits include more experiments than previous studies and have yielded new physical insights. Specifically, they included the latest LHC data, which has made it possible to rule out an entire region of the parameter space in one supersymmetric model.

The proceedings of the FUSION14 conference have been published online in EPJ Web of Conference in January 2015. The proceedings were sent to EDP Sciences in mid december 2014. It is remarkable that, despite the end of the year break and the relatively large number of contributions, the proceedings have appeared online so quickly.
The editorial team of the FUSION14 proceedings has very much appreciated the flexibility of EDP Sciences who could accommodate for our submission of the proceedings at a later date than expected as well as their professionalism.
This is not the first edition of FUSION proceedings to appear in EPJ Web of Conferences. It is also likely that the proceedings of future editions of this triennial conference will again be published in this journal.

Cédric Simenel, The Australian National University, Australia
Co-editor EPJ Web of Conferences vol. 86, 2015

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences