Proceedings

EPJ C Highlight - Combining experimental data to test models of new physics that explain dark matter

alt
Likelihood of scattering, from the scalar singlet model and experimental data comparison.

The most statistically consistent and versatile tool to date is designed to gain insights into dark matter from models that extend the standard model of particle physics, rigorously comparing them with the latest experimental data

In chess, a gambit refers to a move in which a player risks one piece to gain an advantage. The quest to explain dark matter, a missing ingredient from the minimal model that can describe the fundamental particles we have observed (referred to as the standard model of particle physics), has left many physicists eager to gain an advantage when comparing theoretical models to as many experiments as possible. In particular, maintaining calculation speed without sacrificing the number of parameters involved is a priority. Now the GAMBIT collaboration, an international group of physicists, has just published a series of papers in EPJ C that offer the most promising approach to date to understanding dark matter.

The collaboration has developed the eponymous GAMBIT software, designed to combine the growing volume of experimental data from multiple sources—a process referred to as a global fit—in a statistically consistent manner. Such data typically comes from astrophysical observations and experiments that collide subatomic particles, such as those involving the Large Hadron Collider (LHC), based at CERN in Geneva, Switzerland.

The software enables new experimental data and physics models to be included with ease and is now freely available to the scientific community. With the capacity to take more scenarios into account than was previously possible, this approach opens the door to explorations of many new theoretical explanations of the presence of dark matter.

In the first three GAMBIT physics studies published so far in EPJ C, the authors produce the most rigorous global fits of four different extensions of the standard model, referred to as supersymmetric, and another model, called the simple scalar singlet extension. The global fits include more experiments than previous studies and have yielded new physical insights. Specifically, they included the latest LHC data, which has made it possible to rule out an entire region of the parameter space in one supersymmetric model.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences