Proceedings

EPJ E Highlight - When liquids get up close and personal with powders

alt
Schematic representation of the transfers of solvent to the polymer layer occurring during spreading, in the reference frame of the droplet

Scientists leave no stone unturned when studying how a liquid wets a powder

Every cook knows that dissolving powder into a liquid, such as semolina in milk or polenta in water, often creates lumps. What they most likely don’t know is that physicists spend a lot of time attempting to understand what happens in those lumps. In a review paper published in EPJ E, scientists from the École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), France, share their insights following ten years of research into the wetting of soluble polymer substrates by droplets of solvents like water.

In this article, the authors focus specifically on the first stage of powder dissolution, as water gets into every pore of the powder— a stage called imbibition—and not on the latter, dissolution stage. Typical experiments in the field involve studying the mechanisms of how a droplet of water spreads onto a water-soluble polymer layer over time. As the droplet spreads, the solvent content in the substrate varies. The way the droplet spreads therefore varies according to the variations in the substrate composition on the edge of the droplet.

As a result, scientists now understand the two reasons why certain powders, like flour, which have very long polymer chains, are difficult to dissolve. At the microscopic level, spontaneous imbibition is stopped because of a change in the material softness as the solvent melts the polymer. Thus turning the substrate into a gel and slowing the droplet's spreading. In parallel, hydration results in high solvent affinity for the material to be wetted and the droplet’s ability to spread. Hence, the more solvent reaches the substrate, the more the solvent tends to spread on it. Scientists have yet to identify the typical size of the grains and pores or the size distribution of grains and pores that need to be fine-tuned to accelerate the imbibition and, at a later stage, the subsequent dissolution.

Wetting of polymers by their solvents. F. Lequeux, L. Talini, E. Verneuil, G. Delannoy and P. Valois (2016), Eur. Phys. J. E 39: 12, DOI 10.1140/epje/i2016-16012-y

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences