Proceedings

EPJ E Highlight - Tumble-proof cargo transporter in biological cells

alt
The average number density field of particles in the vicinity of the motor

New model shows how collective transport by synthetic nanomotors along biopolymer filaments can be effectively directed

Ever wondered how a molecular nanomotor works when repairing DNA or transporting material such as organelles in the cell? Typically, nanomotors move along biopolymer filaments to go about their duties in the cell. To do so, they use the energy of chemical reactions derived from their surroundings to propel themselves. In a new study published in EPJ E, Mu-Jie Huang and Raymond Kapral from the University of Toronto in Ontario, Canada show that small synthetic motors can attach to polymeric filaments and - unlike what previous studies showed - move along without changing either their shape or the direction in which they set out to move. This makes it possible to effectively deliver the substances they transport, such as anti-cancer drugs or anti-pollutants.

The team has designed these nanomotors to move using the spatial variations of the concentrations of chemical species that they produce themselves by means of chemical reactions on their surfaces. The main improvement brought by this study’s findings is that even very small synthetic motors - possibly on the molecular scale of Angstroms, one ten-billionth of a meter - can operate efficiently without suffering from rapid tumbling and loss of initial direction.

The authors studied the motions of these nanomotors on a filament surrounded by solvent by creating a coarse-grained level biomimetic model featuring all chemical species as particles - namely, solvent molecules, the molecular building blocks of the filament and the motors themselves. The advantage: this approach accounts for disturbances stemming from the random motions of the solvent molecules and for macroscopic solvent fluid flows accompanying the motor motion.

They found that the local concentration of catalytic product helping fuel their movement leads to a reversal of the direction of the collective movement of nanomotors, provided that they are in high enough concentration. The work promises to stimulate further research on directed cargo transport.

Collective dynamics of diffusiophoretic motors on a filament. M-J. Huang and R. Kapral (2016), Eur. Phys. J. E 39: 36, DOI 10.1140/epje/i2016-16036-3

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences