Proceedings

EPJ E Highlight - Molecular scale transporter with a twist, powered by liquid crystal defects

Twisting effect, called chirogyral, dictated by the handedness of the fibre in a vertical magnetic field.

Delivery of biochemical substances is now possible using a novel application of liquid crystal defects, forming a loop enclosing the substance travelling alongside twisted fibres

Defects that break the symmetry of otherwise orderly material are called topological defects. In solid crystals, they are called dislocations because they interrupt the regularly structured atom lattice. In contrast, topological defects called disclinations take the form of loops in liquid crystal of the nematic variety, whose elongated molecules look like a shoal of fish. New experiments supported by a theoretical model show how defects forming loops around twisted plastic fibres dipped in liquid crystal could be used for the transport of biochemical substances, when controlled by electric and magnetic fields. Published in EPJ E, these findings - achieved by Mallory Dazza from the Ecole normale supérieure Cachan, France, and colleagues - have potential applications in electro-optical micromechanical and microfluidic systems.

The fruit of a Portuguese, Slovene and French collaboration, this work focuses on defects referred to as ‘captive disclination loops.’ The authors set out to manipulate these loops stabilised by encircling twisted fibres, like a necklace, by applying a magnetic field that is oblique to the fibres. Dazza and her colleagues found that loops are sensitive to whether the fibres are twisted in a right-handed or left-handed manner. This handedness is a characteristic that is native in cellulose fibres or can be induced by a simple twist in plastic fibres.

The authors also found that the tilt of a loop is proportional to the angle of the twist of the fibre. This made them realise that the tilt increases when an electric or magnetic field is applied perpendicular to the fibre.

Moreover, the loops have the ability to move alongside a translational motion when a magnetic field is applied in a direction oblique to the fibre. This means that by applying such a field, it is possible to control the transport of molecules trapped inside the loops, moving alongside the fibres.

Action of fields on captive disclination loops. M. Dazza, R. Cabeça, S. Čopar, M. H. Godinho and P. Pieranski (2017), Eur. Phys. J. E 40: 28, DOI 10.1140/epje/i2017-11516-6

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences