Proceedings

EPJ E Highlight - Better chemo drug adsorption onto targeted delivery capsules

Adsorption of chemo drug onto active carbon with aluminium inclusion

New study demonstrates adsorption of chemotherapy drugs onto active carbon delivery capsule can be enhanced with aluminium atom inclusions

The efficacy of chemotherapy treatment depends on how effectively it reaches cancerous cells. Increasing targeted delivery could mean decreasing side effects. Scientists are enhancing methods of selectively transmitting active chemotherapy agents and reducing their toxicity by encapsulating chemo drugs into active carbon used as the targeted delivery device. In a new study published in EPJ E, Gabriel Román, from the National University of the South, in Bahia Blanca, Argentina, and colleagues have demonstrated that adding minute amounts of aluminium atoms onto activated carbon atoms helps increase the adsorption onto the delivery carbon capsule of a standard chemotherapy drug, called 5-Fluorouracil (5-FU). This drug is typically used for stomach, colorectal, neck and head cancer treatments. This model could lead to more effective and convenient cancer treatments with fewer side effects by encapsulating the chemo drug into the active carbon, so that it can be taken orally.

In this study, the authors examined the adsorption of 5-FU on test surfaces made up of activated carbon alone and a version containing a minute dispersion of aluminium within the activated carbon structure. They relied on molecular modelling simulation to predict and display adsorption configuration and energy changes in the two scenarios.

The authors found that aluminium inclusion increases the adsorption capacity of active carbon. This is because the addition of the metal increases the interactions of the drug with the atoms of the encapsulation material in areas where it is polarised. The electric charges present in some areas of the surface of the drug interact with the charges of the aluminium atoms on the surface of the capsule material. This means they contribute to improving its adsorption properties as less energy is required for the adsorption and the drug is at a shorter distance from the encapsulation material.

In the last years, I contributed to organize different scientific events with the University of Messina and the Bonino-Puleio foundation and with the support of the INFN. In the most of cases, we decided to publish the proceedings in the EPJ Web of Conferences. The main reasons of this choice are: the cost of the publication is very competitive with respect the other publisher (important to justify the expense with the own administration), the quality of the services are excellent from different points of view: the publishing editor and Collaborators are kind to furnish very soon all information and to process all requests, they are able to publish the proceedings in very short time and with high quality. The journal provides also citation indexing via ISI Web of Knowledge and Scopus, very important for the visibility of the articles and the authors.

Giuseppe Mandaglio, University of Messina, Italy
Co-editor EPJ Web of Conferences vol. 142 (2017)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences