Proceedings

EPJ E Highlight - Acanthamoeba castellanii offers a simplified model for density-driven cell migration

Trajectories of Acanthamoeba castellanii cells

New analysis reveals that the motion of this unicellular amoeba is governed solely by cell–cell collisions, providing a useful model for isolating the effects of density on migration

Cell migration is vital to numerous biological processes. While often guided by long-range biochemical cues, it can also be influenced by direct physical collisions, which trigger biochemical signals within the affected cells. When studying this behaviour, it is important for researchers to consider how individual cell motions are affected by overall cell density. However, experiments have been complicated by the many interacting factors involved, making it difficult to isolate the specific impact of direct cell–cell collisions.

In new research published in EPJ E, a team led by Jean-Paul Rieu at Claude Bernard University Lyon 1 demonstrates how one unicellular amoeba species, Acanthamoeba castellanii (Ac), migrates in ways that are unaffected by long-range biochemical signalling – making it a promising model for studying how density influences cell migration. By using Ac, the researchers aim to gain deeper insights into the mechanisms of cell motion relevant to diverse biological processes, including immune responses, cancer cell invasion, and tissue development.

The frequency of collisions between migrating cells is directly influenced by cell density: as cells become more crowded, they collide more frequently. However, previous studies have reported conflicting results on how such interactions affect motion.

Rieu’s team analysed the trajectories of Ac cells using a classical model of random motion, which also accounts for short-term diffusive behaviour. Using a combination of experiments and theoretical modelling, they explored how cell motions are altered by collisions in crowded environments. They found that collision frequency plays a key role in linking density to the reorientation rate of migrating cells.

Their findings reveal that while individual Ac cells migrate at a constant speed, their direction of motion is governed entirely by collisions. At high densities, cells travel in straight lines between collisions – a behaviour rarely seen in eukaryotic organisms. These results establish Ac as a simplified model for studying cell migration in the absence of biochemical signalling. In turn, the researchers hope it could lead to improved methods for analysing cell migration in complex, high-density environments.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences