Proceedings

EPJ E - The art of stabilising entangled spaghetti-like materials

Controlling forces between oppositely charged polymers opens a new route towards creating vectors for gene therapy

Gene therapy can only be effective if delivered by a stable complex molecule. Now, scientists have determined the conditions that would stabilise complex molecular structures that are subject to inherent attractions and repulsions triggered by electric charges at the surfaces of the molecules, in a study published in EPJE, by Valentina Mengarelli and her colleagues from the Solid State Physics Laboratory at the Paris-Sud University in Orsay, France, in collaboration with Paris 7 and Evry Universities scientists.

The authors studied soluble complexes made of negatively charged DNA or another negatively charged polymer – polystyrene-sulfonate (PSSNa) – and a so-called condensation agent, which is a negatively charged polymer, known as linear polyethyleneimine (PEI). PEI participates in the condensation process by tying onto a molecule such as DNA, like tangled hair, to form an overall positively charged DNA/polymer complex structure.

Previous research focused mainly on non-soluble complexes, while the few attempts at focusing on soluble complexes dealt either with smaller polymers or those with a weaker electric charge, which may therefore be easier to stabilise.

The French team thus confirmed experimentally that the complexation process does not depend on the rigidity of the original molecule, be it DNA or PSSNa, but on the positive/negative electric charge ratio and on the polymer concentrations. It is the interactions between electrically charged parts within the complex that govern its properties. When the condensation agent is in excess, the positively charged complex is then attracted to negatively charged biological cell membranes. This could be used to deliver the DNA into a targeted cell nucleus as part of gene therapy treatment.

Future work will focus on using long DNA molecules and novel polymers to form complexes of controlled size and electric charge for gene therapy.

Charge inversion, condensation and decondensation of DNA and Polystyrene sulfonate by polyethylenimine.
V. Mengarelli et al., Eur. Phys. J. E (2011) 34: 127, DOI 10.1140/epje/i2011-11127-3

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences