EPJ E Highlight - How proteins read meta DNA code

Schematic representation of the model. © A. Fathizadeh et al.

Scientists have accurately calculated the sliding mechanism for deciphering the second genetic code written within the DNA base pair sequence

Three-quarters of the DNA in evolved organisms is wrapped around proteins, forming the basic unit of DNA packaging called nucleosomes, like a thread around a spool. The problem lies in understanding how DNA can then be read by such proteins. Now, Arman Fathizadeh, a physicist at Sharif University of Technology in Tehran, Iran, and colleagues have created a model showing how proteins move along DNA, in a paper just published in EPJ E.

The problem is that until now, we did not clearly understand the physical mechanisms of how to “open the book” to read the genetic text contained in DNA. Studying the dynamics of the nucleosome over reasonable time scales by means of molecular dynamics simulations is out of the question, as it would be too complex. Instead, the authors developed a basic computer model of the nucleosome in which DNA is described by a sequence of rigid blocks representing the base pairs. By introducing flexible binding sites of the DNA to the protein core, it provides a more physical representation of the system. It also makes it possible to identify the sliding mechanism of nucleosomes along the DNA .

The idea is that a small defect in the form of a missing or extra base pair enters the DNA section wrapped around a nucleosome. This defect can then diffuse through the wrapped DNA and once it leaves the other end of the wrapped section, the nucleosome moves by the extra or missing length that the defect carried with it. This model supports the idea of a second genetic code, previously suggested in 2006. This would consist of a mechanical code written down within the base pair sequence and multiplexed with the traditional genetic code.

Rigid body molecular dynamics of DNA inside a nucleosome. A. Fathizadeh et al. (2013), European Physical Journal E 36: 21, DOI 10.1140/epje/i2013-13021-4

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences