Proceedings

EPJ H Highlight - From a model of fluids to the birth to a new field in computational physics

alt
Berni G Alder giving a talk at EPFL in 2009.

Revisiting the roots of a physics field known as computational statistical mechanics

It may sound like the stuff of fairy tales, but in the 1950s two numerical models initially developed as a pet project by physicists led to the birth of an entirely new field of physics: computational statistical mechanics. This story has recently appeared in a paper published in EPJ H, authored by Michel Mareschal, an Emeritus Professor of Physics at the Free University of Brussels, Belgium. The article outlines the long journey leading to the acceptance of such models - namely Monte Carlo and Molecular Dynamics simulations - as reliable evidence for describing matter. This happened at a time when the computing power required to run simulations was scarce. Today, these techniques are used by thousands of researchers to model the behaviour of materials, in contexts ranging from fusion to biological systems.

The saga began in 1951, when John G. Kirkwood from the California Institute of Technology, USA, developed this counter-intuitive theoretical prediction: a model of hard spheres - a rough model for any fluid - undergoes a transition from a fluid to a solid state under controlled conditions. This implies that the ordered solid form holds more entropy - or has more space available for moving around - than the disordered fluid form. These spheres do not normally interact with one another, like molecules in a perfect gas - experiencing an infinite repulsion when they come into contact.

Kirkwood’s theoretical prediction remained controversial until it was supplemented by intensive parallel work pursued by two teams of US physicists, originally launched as side projects. The first involved Bill Wood at the Los Alamos Laboratory, and led to the development of the Monte Carlo approach; the second, which involved Berni Alder at Livermore National Laboratory, led to the development of molecular dynamics. Ultimately, it was the introduction of importance sampling - a clever way to perform Monte Carlo—on the part of Marshall Rosenbluth (also at Los Alamos) that proved to be a real stroke of genius in confirming Kirkwood’s prediction.

“Early years of Computational Statistical Mechanics” by Michel Mareschal (2018), European Physical Journal H, DOI 10.1140/epjh/e2018-90006-7

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences