Proceedings

EPJ H Highlight - More than one brain behind E=mc2

alt
Friedrich Hasenöhrl found proportionality between energy and its mass in a cavity filled with radiation. Source: Österreichische Zentralbibliothek fuer Physik

A new study reveals the contribution of a little known Austrian physicist, Friedrich Hasenöhrl, to uncovering a precursor to Einstein famous equation

An American physicist outlines the role played by Austrian physicist Friedrich Hasenöhrl in establishing the proportionality between the energy (E) of a quantity of matter with its mass (m) in a cavity filled with radiation. In a paper just published in EPJ H, Stephen Boughn from Haverford College in Pensylvannia argues how Hasenöhrl’s work, for which he now receives little credit, may have contributed to the famous equation E=mc2.

According to science philosopher Thomas Kuhn, the nature of scientific progress occurs through paradigm shifts, which depend on the cultural and historical circumstances of groups of scientists. Concurring with this idea, the authors believe the notion that mass and energy should be related did not originate solely with Hasenöhrl. Nor did it suddenly emerge in 1905, when Einstein published his paper, as popular mythology would have it.

Given the lack of recognition for Hasenöhrl’s contribution, the author examined the Austrian physicist’s original work on blackbody radiation in a cavity with perfectly reflective walls. This study seeks to identify the blackbody’s mass changes when the cavity is moving relative to the observer.

He then explored the reason why the Austrian physicist arrived at an energy/mass correlation with the wrong factor, namely at the equation: E = (3/8) mc2. Hasenöhrl’s error, they believe, stems from failing to account for the mass lost by the blackbody while radiating.

Before Hasenöhrl focused on cavity radiation, other physicists, including French mathematician Henri Poincaré and German physicist Max Abraham, showed the existence of an inertial mass associated with electromagnetic energy. In 1905, Einstein gave the correct relationship between inertial mass and electromagnetic energy, E=mc2. Nevertheless, it was not until 1911 that German physicist Max von Laue generalised it to include all forms of energy.

Hasenöhrl and the Equivalence of Mass and Energy. S. Boughn (2013), European Physical Journal H, DOI 10.1140/epjh/e2012-30061-5

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences

Conference announcements