Proceedings

EPJ Plus Highlight - Beer mats make bad frisbees and why it matters

Modelling of flat discs like beer mats shows why they make bad frisbees.

Whilst modelling the forces acting upon a thrown beer mat, physicists discover why flat discs have such poor flight potential.

The question ‘Why do beer mats make bad frisbees?’ may initially seem like something of an odd inquiry to spark research. Yet, by considering the physical properties of such a common everyday item, physicists can create models that also describe the behaviours of a wide range of objects. In a new paper published in EPJ Plus, Johann Ostmeyer, the University of Bonn, Germany, and his co-authors look at the dynamics that give beer mats poor fight potential.

Read more...

EPJ Plus Focus Point on Light Pressure across All Scales

This focus point issue of European Physical Journal Plus (EPJ Plus) finds its inspiration in the huge number of applications of light pressure across all scales of Nature, from space to nanoscience and atomic physics. Together this issue features 11 papers, including both experimental and theoretical works, which span a wide range of activities. These also include 3 review papers on the theory and practice of optical tweezers, its application in single molecule experiments and in the study of critical Casimir forces.

Read more...

EPJ Plus Focus Point on Classical and Quantum Information Geometry

What is information? What can we do with information? How are we supposed to understand information? How does information influence the development of modern Science?

Some, if not all and a thousand more, of these questions come to the mind of almost every modern researcher whose research area is somehow interconnected with Information Theory. However, the answers to these questions are far from being completely unravelled, and some recent theoretical developments seem to suggest that our understanding of the geometrical aspects of Information Theory will play an increasingly important role in the quest for answers.

Read more...

EPJ Plus Highlight - Understanding the mechanism that gives light a ‘little extra push’

An experimental set-up suggested by new research tests the phenomenon of radiation pressure by setting up what is almost analogous to a ‘quantum rugby scrum’

The use of light to move matter has a wide range of technological applications and could one day even power spaceflight. New research suggests a method to better understand this subtle phenomenon.

We are all familiar with the sight of a white pool ball striking a red and smoothly transferring its momentum. What is less familiar is that light can also transfer momentum and is even able to give objects a tiny push. A new paper published in EPJ Plus suggests a way to examine the mechanism behind light’s subtle momentum transfer — the Poynting vector. The paper is the work of Manuel Marqués of IFIMAC-The Condensed Matter Physics Center, and the Nicolás Cabrera Institute (INC), Universidad Autónoma de Madrid, Spain, and Shulamit Edelstein and Pedro Serena from the Spanish National Research Council (CSIC).

Read more...

EPJ Plus Highlight - A deeper understanding of how cells move and stick together

Typical cell adhesion configurations. Understanding how cells adhere is key to understanding the process allowing cells to form cohesive tissues

The way cells adhere to surfaces is an important element in allowing them to form cohesive tissues. A new study looks at how cells stick to a surface and spread across it.

Observing how cells stick to surfaces and their motility is vitally important in the study of tissue maintenance, wound healing and even understanding how cancers progress. A new paper published in EPJ Plus, by Raj Kumar Sadhu, Weizmann Institute of Science, Rehovot, Israel, takes a step towards a deeper understanding of these processes.

Read more...

EPJ Plus Focus Point on Cancer & HIV/AIDS Dynamics: From Optimality to Modelling

This Focus Point covers twelve original papers obtained from advanced theoretical analysis, experimental, and numerical simulations in Cancer and HIV/AIDS research. Results include a randomized discrete logistic equation to describe the dynamics of breast tumor; a mathematical model of breast cancer involving a system of differential equations with piecewise constant arguments to analyze the tumor growth and chemotherapeutic treatment; a new stochastic HIV mathematical model; incorporation of the Beddington–DeAngelis incidence rate to a continuous-time HIV infection model with cure rate and full logistic proliferation; a model for the tumor and normal cell growth under the influence of carcinogenic agents, an immunomodulator and variable influx of immune cells; a within-host HIV dynamical model under the effect of cytotoxic T lymphocytes immune response; the study of the interaction between drug addiction and the contagion of HIV/AIDS; a system of fractional differential equations with delays and a new computational method based on hybrid functions and Legendre polynomials with application to immunodeficiency viruses systems; investigation of cervical cancer; an HIV/AIDS epidemic model under fractal-fractional-order derivatives; study of the dynamics of HIV-AIDS infection via a fractional order SICA system; and sufficient conditions for the stability of a system describing the growth of malignant tumors.

Read more...

EPJ Plus Highlight - A full-scale prototype for muon tomography

Assessing muon scattering angles

Building on previous studies of muon tomography techniques, this topical issue demonstrates a full-scale prototype for the technology, capable of determining the position of a small lead block within a large sensing area

Each year, billions of tons of goods are transported globally using cargo containers. Currently, there are concerns that this immense volume of traffic could be exploited to transport illicit nuclear materials, with little chance of detection. One promising approach to combating this issue is to measure how goods interact with charged particles named muons – which form naturally as cosmic rays interact with Earth’s atmosphere. Studies worldwide have now explored how this technique, named ‘muon tomography,’ can be achieved through a variety of detection technologies and reconstruction algorithms. In this article of EPJ Plus, a team headed by Francesco Riggi at the University of Catania, Italy, build on these results to develop a full-scale muon tomograph prototype.

Read more...

EPJ Plus Focus Point on Solitons, Integrability, Nonlinear Waves: Theory and Applications

Nonlinear waves have long been at the research focus of both physicists and mathematicians, in diverse settings ranging from electromagnetic waves in nonlinear optics to matter waves in Bose-Einstein condensates, from Langmuir waves in plasma to internal and rogue waves in hydrodynamics. The study of physical phenomena by means of mathematical models often leads to nonlinear evolution equations known as integrable systems. One of the distinguished features of integrable systems is that they admit soliton solutions, i.e., stable, localized traveling waves which preserve their shape and velocity in the interaction. Other fundamental properties are their universal nature, and the fact that they can be effectively linearized, e.g., via the inverse scattering transform, or reduced to appropriate Riemann-Hilbert problems. Moreover, solutions can often be derived by the Zakharov-Shabat dressing method, by Backlund or Darboux transformations, or by Hirota’s method. Prototypical examples of such integrable equations in 1+1 dimensions are the nonlinear Schrödinger equation and its multicomponent generalizations, the sine-Gordon equation, the Korteweg-de Vries and the modified KdV equations, etc. In 2+1 dimensions the most notable examples are the Kadomtsev-Petviashvili (KP) equations, and the Davey-Stewartson equations. The aim of this special issue is to present the latest developments in the theory of nonlinear waves and integrable systems, and their various applications.

Read more...

EPJ Plus Highlight - Understanding electron transport in graphene nanoribbons

Diverse aromatic molecules bound to Graphene Nanoribbons result in different electron transport behaviour

New understanding of the electrical properties of graphene nanoribbons (GRBs), when bounded with aromatic molecules, could have significant benefits in the development of chemosensors and personalised medicine.

Graphene is a modern wonder material possessing unique properties of strength, flexibility and conductivity whilst being abundant and remarkably cheap to produce, lending it to a multitude of useful applications – especially true when these 2D atom-thick sheets of carbon are split into narrow strips known as Graphene Nanoribbons (GNRs). New research published in EPJ Plus, authored by Kristiāns Čerņevičs, Michele Pizzochero, and Oleg V. Yazyev, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, aims to better understand the electron transport properties of GNRs and how they are affected by bonding with aromatics. This is a key step in designing technology such chemosensors.

Read more...

EPJ Plus Focus Point on Nanotechnology, Nanomaterials and Interfaces

The Special Issue contains the articles which were presented at the International research and practice conference “Nanotechnology and Nanomaterials” (NANO-2018), which was organized by the Institute of Physics of NAS of Ukraine with the participation of the Yuriy Fedkovych Chernivtsi National University (Ukraine), University of Tartu (Estonia), University of Turin (Italy), Pierre and Marie Curie University – Paris 6 (France).

The Special Issue gathered high-level articles at the forefront of nanoscience research which is devoted to: the optical absorption by a nanosystem with dielectric quantum dots; the fabrication of crystalline Bi2TeO5 - Bi4Si3O12 - SiO2 nanocomposite; the existence of both size and “even-odd” effects for the lifetime of carbyne-based nanodevices consisting of two graphene sheets connected by a carbyne chain; the adsorption properties of the silica-titanium mixed oxide; the adsorption properties and application perspectives of BSA films as sensitive coatings for gas sensors; the properties of MgFe2O4; to the problem of band broadening of SPR; the structural studies concerning the formation of self-assembled indium deposited nanostructures on the (100) surface of In4Se3 layered semiconductor and the possibility of constructing the general dynamic properties of a conduction electron injected into graphene in the rectangular lattice approximation.

The Guest Editor, Olena Fesenko, hopes that this collection provides a quick overview on recent trends in this emerging field of research.

Read more...

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences