Proceedings

EPJ ST Highlight - Using AI to expand the quality and fairness of urban data

Filling in gaps in real city data.

The sparse and inconsistent availability of urban data is currently hampering efforts to manage our cities fairly and effectively – but this could be solved by exploiting the latest advances in artificial intelligence.

Our cities are remarkably complex systems. Every day, they host countless numbers of interconnected exchanges between people and processes, generating vast amounts of data in turn. Researchers have begun to explore how this information could be used to improve urban environments – but due to limitations in its quality, these efforts continue to face significant challenges. Through detailed analysis published in EPJ ST, Bill Howe and colleagues at the University of Washington, USA, propose how artificial intelligence (AI) could be used to expand the coverage, access, and fairness of data collected in cities.

While AI is now increasingly being exploited to analyse cities, its use so far has been widely associated with profit-oriented, potentially societally harmful applications, such as facial recognition. Howe’s team hope that this picture could change through new advances in neural networks: AI models which mimic the functions of our brains as they learn and process new information.

Specifically, they propose that the networks could reconcile ‘top-down’ approaches for analysing cities, which aim to model large-scale, emergent properties of cities, with ‘bottom-up’ techniques, which aim to recreate individual interactions as closely as possible. So far, this unification has remained difficult due to inconsistencies in the availability and quality of data collected in cities.

To achieve these goals, Howe and colleagues identify four specific challenges which could be addressed by AI: including expansions of existing data sources to account for sparse, inconsistent coverage; developing new sources based around governance, economics, decision making, and public participation; exploiting a more diverse range of approaches to analysing data; and finally, understanding the potential trade-offs between the accuracy, usefulness, and fairness of data. By implementing these improvements, the team hopes that AI could soon be used to address key questions in mobility, justice, and governance within cities, in which all citizens can play a part.

Howe, B., Brown, J.M., Han, B. et al. Integrative urban AI to expand coverage, access, and equity of urban data. Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-022-00475-z

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences