Proceedings

EPJ ST Highlight - Energy harvesting to power the Internet of Things

The design of the energy harvester, showing a vibrating magnetic array facing a planar coil.

A new paper in EPJ Special Topics shows how energy can be harvested from vibrating micromagnets to power the now ubiquitous wireless sensors in the most efficient way.

The wireless interconnection of everyday objects known as the Internet of Things depends on wireless sensor networks that need a low but constant supply of electrical energy. This can be provided by electromagnetic energy harvesters that generate electricity directly from the environment. Lise-Marie Lacroix from the Université de Toulouse, France, with colleagues from Toulouse, Grenoble and Atlanta, Georgia, USA, has used a mathematical technique, finite element simulation, to optimise the design of one such energy harvester so that it generates electricity as efficiently as possible. This work has now been published in EPJ ST.

The Internet of Things consists of an enormous number of generally small, portable devices, each of which needs its own sustainable micro-energy source. Batteries are unsatisfactory for this as they will often need to be replaced or recharged. Many different technologies are being considered instead, with one of the most promising solutions being electromagnetic energy harvesting.

An electromagnetic energy harvester consists of a vibrating plate holding an array of micromagnets facing and coupled with a parallel, static coil. Electrical energy is generated by the vibrating magnets and the amount of electricity that can enter a circuit depends on the design of the coil and magnet and the spacing between them.

Lacroix and her team studied a system in which the magnets were state-of-the-art NdFeB ones - that is, they were composed from an alloy of the rare earth metal neodymium with iron and boron. They found that power could be optimised through a trade-off between the spacing of the magnets in the array and the number of turns in the coil; reducing the distance between coil and array and increasing the thickness of the magnets can also increase it. “We are now producing harvesters using the guidelines that we have developed through this study,” she explains. These devices are likely to prove useful in the aerospace, automotive and biomedical sectors and others that have come to rely on the Internet of Things.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences