EPJ TI publishes two tutorial style articles from the group of Sebastiaan van de Meerakker


As part of the new Thematic Series ”Methods for Cold Molecules and Ions: Tutorial Reviews” (Guest Eds. Stefan Willitsch, Hendrick Bethlem, Bob Continetti), EPJ Techniques and Instrumentation features two tutorial style articles from the group of Sebastiaan van de Meerakker (Radboud University, Netherlands).

Optimal beam sources for Stark decelerators in collision experiments (EPJ Techniques and Instrumentation 2015, 2:12, DOI 10.1140/epjti/s40485-015-0021-y) by Sjoerd N Vogels, Zhi Gao and Sebastiaan YT van de Meerakker describes the use of the Stark deceleration technique to produce packets of molecules with a tunable velocity, a narrow velocity spread, and a high state purity, for us in high resolution spectroscopy, cold molecule trapping, and controlled scattering experiments. The quality and purity of the packets of molecules emerging from the decelerator critically depend on the specifications of the decelerator, but also on the characteristics of the molecular beam pulse with which the decelerator is loaded. The authors consider three frequently used molecular beam sources, and discuss their suitability for molecular beam deceleration experiments, in particular with the application in crossed beam scattering in mind.

In Analysis of velocity-mapped ion images from high-resolution crossed-beam scattering experiments (EPJ Techniques and Instrumentation 2015, 2:11, DOI 10.1140/epjti/s40485-015-0020-z) by Alexander von Zastrow, Jolijn Onvlee, David H. Parker and Sebastiaan Y.T. van de Meerakker the authors describe how the use of velocity map imaging with the Stark decelerator allows the measurement of scattering images with unprecedented radial sharpness and angular resolution. However, differential cross sections must be extracted from these high-resolution images with extreme care, and common image analysis techniques that are used in crossed beam experiments can result in systematic errors. Using a high-resolution data set on inelastic collisions of velocity-controlled NO radicals with Ne atoms, the authors describe the challenges met by the high resolution, and present methods to mitigate or overcome them.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences