Proceedings

EPJ B Highlight - When crystal vibrations‘ inner clock drives superconductivity

Superconductor. © ktsdesign/Fotolia

Tweaking equations to drive greater superconductivity-inducing crystal vibrations proves theoretical possibility of creating higher temperature superconductors

Superconductivity is like an Eldorado for electrons, as they flow without resistance through a conductor. However, it only occurs below a very low critical temperature. Physicists now believe they can enhance superconductivity - the idea is to externally drive its underlying physical phenomena by changing how ions vibrating in the crystal lattice of the conductor material, called phonons, interact with electron flowing in the material. Andreas Komnik from the University of Heidelberg and Michael Thorwart from the University of Hamburg, Germany, adapted the simplest theory of superconductivity to reflect the consequences of externally driving the occurrence of phonons. Their main result, published in EPJ B, is a simple formula explaining how it is theoretically possible to raise the critical temperature using phonon driving.

The authors studied the all-important autocorrelation function of phonons in the superconductivity BCS theory, named after John Bardeen, Leon Cooper and John Robert Schrieffer. Superconductivity is induced by phonons cooperating to bring the electrons together in the so-called Cooper pairs - against their spontaneous tendancy to repel each other. In this work, the authors focused on the scenario of an X-ray light field rattling the phonons. They realised that a kind of driving, which controls the frequency of vibration of the lattice sites, can profoundly change the pairing of the electrons.

However, electrons and phonons do not follow the same internal clock. This means that change at what is perceived as a normal pace for phonons comes across as extremely slow to electrons. To eliminate this discrepancy, the author devised a solution based on bringing a clever time-averaging procedure into the BCS equations. This theoretical approach, the authors found, reveals the controlled elevation of the critical temperature. They thus managed to integrate the external phonon drive into the standard BCS theory. The advantge is that the critical temperature can be computed from this simple formula and can, in theory, be considerably elevated using the driving procedure. Suprisingly, the critical temperature was even higher up when further refinment to the equations accounted for phonon-phonon interactions.

A. Komnik and M. Thorwart (2016), BCS theory of driven superconductivity, Eur. Phys. J. B 89:244, DOI: 10.1140/epjb/e2016-70528-1

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences