Proceedings

EPJ B Highlight: Improved model of energy highway along protein strands

Simulation of polaron dynamics

Lessons from self-trapped electrons in crystal lattice offer better predictive power for transport model

Ever heard of polarons? They are a kind of quasi-particle resulting from electrons self-trapping in a vibrating crystal lattice. Polarons can be harnessed to transport energy under certain conditions related to the relative vibrations of the electrons and the lattice itself. The theory explaining how polarons carry energy in crystals can be applied to long molecules called polypeptides—which can fold into proteins. In a new study published in EPJ B, Jingxi Luo and Bernard Piette from Durham University, UK, present a new mathematical model describing how polarons can be displaced in a directed way with minimum energy loss in linear peptide chains—which were used as a proxy for the study of proteins. The model therefore accounts for the energy transport mechanism explaining how energy generated inside a biological cell moves along transmembrane proteins towards the cell's exterior.

So how are polarons created? Regular crystal lattices display spontaneous vibrations. The presence of electrons produces localised distortions of these vibrations. When the electrons and the lattice experience a particular kind of electromagnetic interaction, or coupling, the energy potential for the electron is lowered, thus trapping it within the lattice. A similar coupling takes place between polarons and the peptide units in polypeptides.

Using simulations, the authors found that what determines the ability of polarons to transport energy is partly linked to the degree of symmetry of the electron interaction with the lattice. One prediction of their model is that a constant electric field, used in concert with random forces caused by heat in the cell environment, can initiate and sustain the motion of a polaron along a polypeptide chain. And this electric field matches the constant energy potential difference to be found across the membrane of a typical cell.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences