Proceedings

EPJ B Highlight - Surfing over simulated ripples in graphene

Effect of the simulated deformation of a physical feature (the local density of state) of an optical lattice analogue of graphene in curved space.

Scientists from India elucidate the theory governing the characteristics of curved or rippled graphene using a simulation model based on an optical lattice

The single-carbon-atom-thick material, graphene, featuring ripples is not easy to understand. Instead of creating such ripples physically, physicists investigating this kind of unusually shaped material rely on a quantum simulator. It is made up of an artificial lattice of light - called ultra-cold optical lattice - akin to eggs held in the cavities of an egg tray. This approach allowed a team of theoretical physicists from India to shed some light - literally and figuratively - on the properties of rippled graphene. These findings have just been published in EPJ B by Tridev Mishra and colleagues from the Birla Institute of Technology and Science, in Pilani, India. Ultimately, this work could find applications in novel graphene-based sensors.

Optical lattices are perfect simulators. They are like mini-laboratories suitable for studying the response of a material after it has been subjected to controllable parameters inducing a deformation. What makes this particular study novel is that the team has managed to control the creation of a curved space or ripples in graphene by relying on an optical lattice simulator. The authors have thus developed a theory describing how a sequence of pulses, whose amplitude can be modulated, changes an optical lattice - specifically, the background geometry of its constituent particles. Previous modelling attempts only described static curved graphene.

Mishra and colleagues have established equations of the energy for particles caught in an optical lattice. This, in turn, simulates the energy of the electrons in a graphene sheet with a curvature. They then use a map to translate the physical characteristics of the approximation used in the curved space picture of graphene to the more realistic optical lattice picture. They thus obtain an understanding of the dynamics of the evolution from the ‘egg in a tray’ structure of the optical lattice in terms of the properties of ‘an omelette style’ continuum of energy found in graphene.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences