Proceedings

EPJ D Highlight - Minutest absolute magnetic field measurement

Geometry of the experiment.

High-precision and high-accuracy magnetic field measurement to support quest for missing antimatter in the universe

Every measurement is potentially prone to systematic error. The more sensitive the measurement method, the more important it is to make sure it is also accurate. This is key for example in measuring magnetic fields in state-of-the-art fundamental physics experiments. Now, an international team of physicists has developed an extremely high-precision method for the determination of magnetic fields. The resulting device, they found, has an intrinsic sensitivity that makes it ideal for fundamental physics and cosmology experiments attempting to explain the missing antimatter of the universe. The findings by Hans-Christian Koch from the University of Fribourg, Switzerland, and colleagues have just been published in EPJ D.

The prototype magnetometer the team developed combines the accuracy of a helium (3He) magnetometer with the high sensitivity of a cesium magnetometer. It is also much more convenient than the previously used combination of helium magnetometers and SQUIDs, which requires cooling near absolute zero.

In this paper, the team establishes a theoretical formula describing the ultimately reachable sensitivity of the magnetometer. To do so, they analysed the dependence of the combined magnetometer’s sensitivity on the properties of its constituents. They found that the sensitivity can be predicted from parameters characterizing the cesium magnetometers and the helium sample involved in the detection. The team’s formula led to predictions that were in excellent agreement with experimental results.

They subsequently calculated the sensitivity of the magnetometer in the envisioned application in an experiment searching for the electric dipole moment of neutrons (nEDM), which are basic constituents of ordinary matter. Observing an nEDM would imply a broken symmetry of the laws of physics, called CP-violation. Such a finding could help to account for the primordial matter-antimatter imbalance at Big Bang stage, leading to the current abundance of matter.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences