Proceedings

EPJ D Highlight - Novel plasma jet offshoot phenomenon explains blue atmospheric jets

Example of the apokamp effect in a plasma jet.

Russian physicists identify mysterious right-angle side-jet occurring off the plasma arc in air at ambient pressure conditions

Ionised matter, like plasma, still holds secrets. Physicists working with plasma jets, made of a stream of ionised matter, have just discovered a new phenomenon. Indeed, Eduard Sosnin from the Institute of High Current Electronics, Russian Academy of Sciences in Tomsk, Russia, and colleagues found a new type of discharge phenomenon in an atmospheric pressure plasma. It has been dubbed apokamp—from the Greek words for ‘off’ and ‘bend’, because it appears at a perpendicular angle to where plasma jets bend. Their findings have been recently published in EPJ D and are particularly relevant for the development of novel applications in medicine, health care and materials processing because they involve air at normal atmospheric pressure, which would make it cheaper than applications in inert gases or nitrogen.

The authors established the conditions for the phenomenon to occur. It takes two electrodes positioned at an angle to each other, together with electric field lines which are curved upward between the two electrodes. It requires not one but both electrodes to have a high voltage to obtain an apokamp plasma jet, which typically develops from the bending point of the discharge channel. The apokamp can vary from a single needle to a 6-7-cm-long conical jet attached to the arc of the plasma current channel.

Using high-speed photography data on the apokamp dynamics, the authors elucidated its nature as consisting of ionisation waves—so-called plasma bullets—that move with a velocity of 100–220 km/s. Such plasma bullets have previously been detected in inert gases and in nitrogen in the presence of negatively charged gas.

The next step would require gathering sufficient data to build a model that can further explain the apokamp phenomenon. This phenomenon can help explain the blue jet phenomenon identified in 1994 in the upper atmosphere, where strange upwards-facing jets develop from thunderstorm clouds.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences