Proceedings

EPJ D Highlight - High-fidelity quantum secret sharing prevents eavesdropping

The relationship between fidelity, amplitude damping coefficient, and unknown state coefficient.

Quantum secret-sharing scheme for noisy environments

To protect the confidentiality of a message during its transmission, people encrypt it. However, noise in the transmission channels can be a source of concern regarding how faithful the message transmission may be after it has been decrypted. This is particularly important for secrets shared using quantum scale messengers. For example, a classical secret takes the shape of a string of zeros and ones, whereas a quantum secret is akin to an unknown quantum state of two entangled particles carrying the secret. This is because no two quantum particles can be in the same state at any given time. In a new study published in EPJ D, Chen-Ming Bai from Shaanxi Normal University, Xi’an, China, and colleagues calculate the degree of fidelity of the quantum secret once transmitted and explore how to avoid eavesdropping.

What is exciting about quantum secrets is that they make it possible to share a secret among a number of participants. Yet, only certain participants can reconstruct the secret by collaborating. Creating a permission system to decide who can access the secret requires the development of a specific procedure. In this study, the authors provide a concrete example of how such an approach could work with three participants.

Since noise in the transmission channel has a great influence on the quantum secret shared, the authors analyse the impacts of two kinds of noisy channels on sharing quantum secrets. Indeed, the quantum system inevitably interacts with the external environment to produce quantum noise, which leads to entanglement between the quantum state and the environment.

In particular, the authors evaluate the consequences of quantum noise and the resulting degree of damping of the encrypted signal by examining its physical characteristics, like its amplitude. This helps determine how faithfully the secret has been transmitted to the receiver. Bai and colleagues find that the fidelity of the encrypted message's transmission improves depending on the quantum state in which the particles carrying the secret find themselves. The authors subsequently provide an optimised strategy to enhance fidelity in secret transmission.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences