Proceedings

EPJ D Highlight - Fullerene compounds made simulation-ready

Color map of the pseudopotentials of C60.

New model helps understand compound nanomolecules made of football-shaped fullerenes

What in the smart nanomaterials world is widely available, highly symmetrical and inexpensive? Hollow carbon structures, shaped like a football, called fullerenes. Their applications range from artificial photosynthesis and nonlinear optics to the production of photoactive films and nanostructures. To make them even more flexible, fullerenes can be combined with added nanostructures. In a new study published in EPJ D, Kirill B. Agapev from ITMO University, St. Petersburg, Russia, and colleagues have developed a method that can be used for future simulations of fullerene complexes and thus help understand their characteristics.

Because of the high affinity to the electron and low rearrangement energy, fullerenes, and C60 in particular, tend to play the role of electron acceptors. Specific polymers can therefore transfer electrons to the core of fullerene C60. For example, the best known donor-acceptor compound involving C60 has been used in photoelectric solar cells. In this study, the authors therefore propose a new model showing variations of the C60 fullerene (in its negative ion form (C60-), neutral form (C60), and positively charged ion form (C60+)) that can be used in molecular dynamics simulations. Particularly, understanding its energy - referred to as electrostatic potential energy, or pseudopotential, which depends on the level of correlation of the molecule with its electrons - can facilitate subsequent studies of these complex compounds.

Agapev and colleagues have developed a model which relies on electronic charge densities that are calculated from scratch. By averaging the total electrostatic potential energy over the entire sphere of the fullerene molecule and their dependency over the distance from the centre of the molecule, the authors provide a model of the energy spread of electrons in the various forms of the fullerene molecules. They demonstrate that the electron correlations, combined with the decrease in electronic density, make the potential energy well for electrons deeper.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences