EPJ D Highlight - Laser solitons: theory, topology and potential applications

The collision of two laser solitons to form a rotating chain of three.

A group of Russian physicists reviews recent developments in the field of laser solitons, which they have made their own and which may have applications in digital information storage.

In almost all situations, even in a vacuum, light cannot travel endlessly without dissipating. Pulses of light known as solitons that propagate along fibres for long distances without changing their shape or losing focus have found applications in data transmission, but even these gradually dissipate unless the medium they travel through has ultra-low absorbance. Nikolay Rosanov of the National Research University of Information Technologies, Mechanics, and Optics (ITMO), St. Petersburg, Russia and his team have been working on a solution to this problem - laser solitons - since the 1980s; a colloquium paper summarising their recent work in this area has now been published in EPJ D.

Rosanov and his group began their work with computer simulations, suggesting that it was theoretically possible to produce a stable soliton in a wide-aperture laser if it was stabilised by external radiation. This prediction was soon confirmed experimentally, and the group has studied these so-called dissipative solitons ever since.

Most recently, the researchers have demonstrated theoretically that it is possible to create such solitons without the use of coherent and stable external radiation. Using parallel programming on high-performance supercomputers, they first modelled a light pulse that is localised in one dimension (a 1D soliton) before extending their technique to model solitons in two and then three dimensions. These three-dimensional solitons have a complex internal structure with distinctive topologies; these have been given descriptive names such as 'apple', 'trefoil' and 'Solomon knot' and they have been shown to merge.

There are still questions for Rosanov and his colleagues to answer before their theory can be put into practice. Once it has been, however, the stability of these solitons and of their topology suggests potential applications in storing digital information. It is by no means impossible that we could, one day, use computers that have laser soliton arrays in place of today's hard disks.

Rosanov and his colleagues wish to thank the Russian Science Foundation for the financial support of their work.

N.N. Rosanov, S.V. Fedorov and N.A. Veretenov (2019) Laser Solitons in 1D, 2D and 3D, European Physical Journal D 73: 141, DOI: 10.1140/epjd/e2019-100064-1

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences