EPJ D Highlight - Laser-based prototype probes cold atom dynamics

Apparatus for cold atom inertial sensing

A new prototype design doubles the frequencies of widely used telecommunications lasers to study the dynamics of cold atoms while in space.

By tracking the motions of cold atom clouds, astronomers can learn much about the physical processes which play out in the depths of space. To make these measurements, researchers currently use instruments named ‘cold atom inertial sensors’ which, so far, have largely been operated inside the lab. In new work published in EPJ D, a team of physicists at Muquans and LNE-SYRTE (the French national metrology laboratory for time, frequency and gravimetry) present an innovative prototype for a new industrial laser system. Their design paves the way for the development of cold atom inertial sensors in space.

The insights gathered by the team could offer significant improvements in the accuracy of tests of fundamental physics, as well as assessments of the Earth’s gravitational field. Studies in the past have made significant strides towards mobile laser systems for cold atom inertial sensing which are more compact, but these have not yet widely proven suitable for measurements in space. In their study, the researchers’ updated laser system was implemented onto a ground-based atomic sensor at LNE-SYRTE. This enabled them to prove that their prototype was ready to carry out real experiments measuring the subtle variations in the Earth’s gravitational field using matter wave interferometry techniques. Their work was carried out in collaboration with Sodern in the frame of a more general study led by the European Space Agency (ESA), whose objective was to assess and improve the maturity of cold atom technologies.

The design involves industrial lasers which are typically used for telecommunications; with their frequencies doubled. This setup benefited from a wide availability of components, as well as extensive previous research into the properties of the lasers. Through further testing in space-like environments, the team hopes that their system could soon allow researchers to probe various aspects of the physical environment of space in unprecedented levels of detail.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences