Proceedings

EPJ D Highlight - Stresses and flows in ultra-cold superfluids

The superfluid flow around obstacles causes exotic forces and stress in quantum liquid. Free-Photos from Pixabay at https://pixabay.com/photos/rocks-stream-water-nature-1246183/

Mathematical modelling of superfluids, which exhibit quantum mechanical properties at a macroscopic scale, shows that they become deformed when flowing around impurities.

Superfluids, which form only at temperatures close to absolute zero, have unique and in some ways bizarre mechanical properties, Yvan Buggy of the Institute of Photonics and Quantum Sciences at Heriot-Watt University in Edinburgh, Scotland, and his co-workers have developed a new quantum mechanical model of some of these properties, which illustrates how these fluids will deform as they flow around impurities. This work is published in the journal EPJ D.

Imagine that you start stirring a cup of tea, come back to it five minutes later and find that the tea is still circulating. In itself, this is clearly impossible, but if you could stir a cup of an ultra-cold liquid this is exactly what would happen. Below about -270oC - that is, just a few degrees above the coldest possible temperature, absolute zero – the liquid becomes a superfluid: a weird substance that has no viscosity and that therefore will flow without losing kinetic energy, creep along surfaces and along vessel walls, and continue to spin indefinitely around vertices.

Superfluids acquire these properties because so many of their atoms fall into the lowest energy state that quantum mechanical properties dominate over classical ones. They therefore provide a unique opportunity for studying quantum phenomena on a macroscopic level, if in extreme conditions. In this study, Buggy and his colleagues use the essential equations of quantum mechanics to calculate the stresses and flows in such an ultracold superfluid under changes in potential energy. They show that the fluid flow will be steady and homogeneous in the absence of impurities. If an impurity is present, however, the fluid will become deformed in the vicinity of that impurity.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences