Proceedings

EPJ D Highlight - A new simple scheme for atom interferometry

The team’s setup consists of two parallel nano-structured slabs that reflect an incident matter beam three times. Credit: J. Fiedler, B. Holst, EPJ D (2024)

New scheme proposes a simpler method for investigating matter waves with an ease of use that could make it ideal for commercial applications

Atom interferometers are devices that use the wave characteristics of matter to measure the phase between atomic matter waves to separate paths to make high-precision measurements of elements of physics, such as gravitational and magnetic fields. Atom interferometers have also found their way into industry and are used in geological surveys, mineral exploration, environmental monitoring, and for the development of precision atomic clocks.

Atom interferometers usually control matter waves and particularly particle velocity using lasers. Thus, the growth of atom interferometer application has been strongly tied to the development of advanced laser systems, with many current models based on the construction of gratings fashioned from laser beams. That means that an issue with these systems is the fact that they depend on the efficient operation of intricate laser systems. Additionally, while this method has achieved commendable precision, it fails slightly when considering shorter wavelengths.

In a new paper in EPJ D authors Johannes Fiedler and Bodil Holst, from the University of Bergen, Norway, describe the development of a continuous beam monochromator scheme that is capable of reaching enormously high-velocity purification based on atom-surface diffraction rather that the use of lasers. The scheme proposed by the authors simplifies application in the construction of atom interferometers by reducing degrees of freedom to just one angle.

The system proposed by the duo is based on reflection atom interferometry, allows preselecting the speeds at which the matter beam moves, and allows the scheme to be tuned to a specific configuration while still allowing it to provide atom beams with high-speed ratios across a range of velocities. The matter beam is sent through a pinhole that ensures the particles with a velocity outside a specific range will be blocked. The velocity-dependent spread of this beam is increased using three reflections, which is made possible by ensuring that the reflective surfaces do not move relative to each other.

The scheme presented by the team is currently used for a helium beam scattering off hydrogen-passivated silicon, but the authors say the proposed device can be adapted to other materials and atomic beams.

The device’s simple design, allowing it to be “tuned” to a specific velocity with a fixed angle, ensures that it will be easy to handle. This could be vital to the development of portable atom gravimeters for commercial applications in geology and investigations such as prospecting and oil surveying.

Fiedler, J., Holst, B. A continuous beam monochromator for matter waves. Eur. Phys. J. D 78, 39 (2024). https://doi.org/10.1140/epjd/s10053-024-00829-3

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences