Proceedings

EPJ D Highlight - Discovering new details in atomic hyperfine structures

The Fourier Transform spectrum of Protactinium

A new approach to analysing infrared spectra reveal 20 new energy levels in the hyperfine structure of Protactinium

Since the late 1960s, the Laboratoire Aimé Cotton (LAC) in Orsay, France, has made significant progress in the classification of complex atomic spectra. These advances have been driven both by the development of Fourier transform spectroscopy, and through novel theoretical interpretations of atomic spectra.

In new research published in EPJ D, Sophie Kröger from the Berlin University of Technology and Economics carried out detailed analysis of Protactinium's infrared (IR) spectrum, revealing 20 new energy levels that were previously undetectable with earlier methods employed by the LAC. The study showcases important progress in the precision of atomic spectrum measurements, which could soon offer deeper insights into atomic structures and interactions.

IR spectra reveal the wavelengths absorbed by atomic samples as they interact with infrared light. These spectra can provide detailed information about hyperfine structures: tiny variations in atomic energy levels that result from complex electromagnetic interactions between atomic nuclei and surrounding clouds of orbiting electrons, which manifest as distinct peaks in the IR spectra.

In her study, Kröger focused on the IR spectrum of Protactinium, which exhibits an especially intricate hyperfine splitting. To enhance the accuracy of previous LAC measurements, she employed an advanced mathematical approach to Fourier transform spectroscopy. This technique converts variations in the IR signal into a spectrum showing how signal varies at different frequencies, allowing for high-precision analysis of the spectral lines.

By comparing the experimental data of hyperfine peak wavelengths with theoretical models, Kröger was able to identify 20 new energy levels in Protactinium’s hyperfine structure. By expanding on this approach, she now hopes to uncover even more subtle energy levels in future studies. Overall, the research highlights the significant strides made in atomic spectroscopy and, could pave the way for fascinating new discoveries in atomic and molecular physics.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences