Proceedings

EPJ D Highlight - Improving tumour radiation therapy: when basic ions break DNA down

Figure 2 from the original paper Caption: “Power spectral density spectrum of a protonated DNA strand.” © Piekarczyk et al.

A new study relevant for cancer radiation therapy shows that DNA building blocks are susceptible to fragmentation on contact with the full range of ions from alkaline element species

Scientists now have a better understanding of how short DNA strands decompose in microseconds. A European team found new fragmentation pathways that occur universally when DNA strands are exposed to metal ions from a family of alkaline and alkaline earth elements. These ions tend to replace protons in the DNA backbone and at the same time induce a reactive conformation leading more readily to fragmentation. These finding have been published by Andreas Piekarczyk, from the University of Iceland, and colleagues in a study in EPJ D. They could contribute to optimising cancerous tumour therapy through a greater understanding of how radiation and its by-products, reactive intermediate particles, interact with complex DNA structures.

In cancer radiation therapy, it is not the radiation itself that directly damages the DNA strands, or oligonucleotides. But rather, it is the secondary reactive particles, leading to the creation of charged intermediates. Here, the authors have studied one of these charged intermediates in the form of so-called protonated metastable DNA hexamers.

To do so, the authors created selected oligonucleotide-metal-ion complexes that they selected to have between zero and six metal ions. They then followed these complexes’ fragmentation reactions using a technique called time-of-flight mass spectrometry. By comparing the different species, they could deduce how the underlying metal-ion-induced oligonucleotide fragmentation works.

They discovered that metal ion-induced fragmentation of oligonucleotides is universal with all alkaline and alkaline earth metal ions, such as, for example, lithium, Li+; potassium, K+; rubidium, Rb+; magnesium, Mg2+ and calcium, Ca2+. They had previously reached the same conclusion for sodium ions—which are ubiquitous in nature, in the form of sodium chloride, or salt. Once the number of sodium ions per nucleotide is high enough, the study shows, it triggers an unexpected oligonucleotide fragmentation reaction.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences