Proceedings

EPJ D Highlight - Identifying ever-growing disturbances leading to freak waves

A schematic one-dimensional illustration of the spatiotemporal evolution of the envelope of wave-train in the absolutely unstable case.

Physicists now better understand wave systems exhibiting unusual disturbances by identifying growing localised patterns as early indicators of such disturbances

Physicists like to study unusual kinds of waves, like freak waves found in the sea. Such wave movements can be studied using models designed to describe the dynamics of disturbances. Theoretical physicists, based in France have focused on finding ways of best explaining how wave disturbance occurs under very specific initial conditions that are key to the genesis of these disturbances. They looked for solutions to this puzzle by resolving a type of equation, called the nonlinear Schrödinger equation. It is solved by applying a method designed for studying instabilities tailored to these initial conditions. Their approach makes it possible to locate exactly where and how pertinent information used to identify disturbance patterns can be extracted from localised disturbances' characteristics. The findings have been published in EPJ D by Saliya Coulibaly, from the University of Lille, and colleagues.

The team focused on analysing the dynamics of a specific kind of disturbance, called realistic spatially localised perturbations. They relied on the theory of evolution of localised disturbances bifurcating from unstable basic state, also known as the theory of absolute and convective instabilities. This approach has been developing since the early 1950s. It makes it possible to compute how localised disturbances are amplified in space and to determine their speed as a group.

Coulibaly and colleagues then combined this theoretical approach - including numerical and analytical treatment - with signal processing tools. To do so, they relied on two types of initial conditions: one with a localised disturbance and one with random noise acting as disturbance. They found their predictions were in excellent agreement with numerical results. Therefore, their findings may contribute to a better understanding of the complex dynamics of systems subjected to such disturbances. For example, they could be used to better understand waves appearing on fluid surfaces, whose evolution is influenced by gravity, or light waves propagated in optical fibres.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences