EPJ Plus Highlight - Scrutinising the tip of molecular probes

The solid lines indicate the temperature range used to estimate the amount of molecules loaded onto the probe.

Nature of interaction of probe molecules on the surface of oxide particles elucidated

Studies of molecules confined to nano- or micropores are of considerable interest to physicists. That’s because they can manipulate or stabilise molecules in unstable states or obtain new materials with special properties. In a new study published in EPJ Plus, Stefan Frunza from the National Institute of Materials Physics in Romania and colleagues have discovered the properties of the surface layer in probe molecules on the surface of oxide particles. These properties depend on the interaction at the interface. In this particular study, probes are formed by adsorption of rod-like cyanophenyl derivates on the surface of oxide particles. The authors found that their surface layers behave like glass-forming liquids.

What physicists already knew is that confinement of molecules may induce disorder. Confinement and disorder have a considerable influence both on the structure of the trapped molecule but also on its mobility. As a result, they also affect aspects such as molecular dynamics upon relaxation of the material. Such structurally well-defined monolayers on solid surfaces will allow researchers to model a large variety of interfacial phenomena.

The authors used data from infrared spectroscopy and thermogravimetry to identify the strength of the interaction between the probe and the oxide surface, which also helped them determine the type of bonding to the surface. They established two key parameters: firstly, the density of the adsorbed surface species used to characterise the interaction of the probe molecule with the surface. This parameter depends on the nature of the oxide nanoparticles and on the existence of nanopores. The second parameter expresses the ratio of the molecules contained in the surface layer having a glassy dynamic behaviour to the total number of the adsorbed molecules.

The study shows that the value of the surface density can be used to divide the composites into several groups. This helps to determine that the probe molecules applied to the surface of a given group can display similar interactions, as observed in surfaces of the same family.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences