Proceedings

EPJ Plus Highlight - Improving safety of neutron sources

Sampling of Lead-Bismuth-eutectic material/cover gas-interface sample consisting of solid material forming a powdery crust onto the steel wall.

Testing liquid metals as target material bombarded by high-energy particles

There is a growing interest in the scientific community in a type of high-power neutron source that is created via a process referred to as spallation. This process involves accelerating high-energy protons towards a liquid metal target made of material with a heavy nucleus. The issue here is that scientists do not always understand the mechanism of residue nuclei production, which can only be identified using spectrometry methods to detect their radioactive emissions. In a new study examining the radionuclide content of Lead-Bismuth-eutectic (LBE) targets, scientists at the Paul Scherrer Institute Villigen (PSI) found that some of the radionuclides do not necessarily remain dissolved in the irradiated targets. Instead, they can be depleted in the bulk LBE material and accumulate on the target's internal surfaces. These findings have recently been published in EPJ Plus by Bernadette Hammer-Rotzler affiliated with the PSI and the University of Bern, Switzerland, and colleagues from Switzerland, France and Sweden. The results improve our understanding of nuclear data related to the radionuclides stemming from high-power targets in spallation neutron sources. They contribute to improving the risk assessment of future high-power spallation neutron beam facilities --including, among others, the risk of erroneous evaluation of radiation dose rates.

In this study, the authors examine the radionuclide content and the spatial distribution of selected radioactive isotopes produced in two Lead-Bismuth-eutectic targets. The first is called the ISOLDE target and was irradiated with 1-1.4 GeV protons at the eponymous Radioactive Beam Facility at the Particle Physics laboratory CERN, Switzerland. The second, called the MAGPIE target, was irradiated at the PSI with 590 MeV protons.

The team relied on gamma-spectrometry for radionuclide measurement. For radionuclides which cannot be measured directly in the initial samples, the authors developed radiochemical separation procedures. The team explains how these radionuclides - due to their specific chemical properties - accumulate in enrichment zones located on the walls of structure components or the interface between the liquid metal and the cover gas. They found that the chemical elements of the lanthanide group – including Gadolimuim 148, Lutetium 173 and Prometium 146 - show pronounced accumulation.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences